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Preface

A man may imagine he understands something,
but still not understand anything in the way that he ought to.

(Paul of Tarsus, 1 Corinthians 8:2)

Calling this a ‘practical theory’ may require some explanation.
Theory and practice are often thought of as two different worlds, governed

by different ideals, principles, and laws. David Lorge Parnas, for instance, who
has contributed much to our theoretical understanding of software engineering
and also to sound use of theory in the practice of it, likes to point out that
‘theoretically’ is synonymous to ‘not really’.

In applied mathematics the goal is to discover useful connections between
these two worlds. My thesis is that in software engineering this two-world
view is inadequate, and a more intimate interplay is required between theory
and practice. That is, both theoretical and practical components should be
integrated into a practical theory.

It should be clear from the above that the intended readership of this book
is not theoreticians. They would probably have difficulties in appreciating a
book on theory where the presentation does not proceed in a logical sequence
from basic definitions to theorems and mathematical proofs, followed by ap-
plication examples. In fact, all this would not constitute what I understand
by a practical theory in this context.

Instead, the book is intended for software engineers, whose interest in
theory depends on its usefulness and maturity for practical purposes. The
emphasis is not on mathematical results but on their support for realistic
specification and design methods, which are themselves an essential part of
the theory. The presentation and the abstractions used in the theory aim at
making the results natural and easy to use.

Throughout my career in computing since 1960 I have found myself some-
where between theory and practice. With a background in mathematics I
have always believed in its power. When computer science was emerging as
a discipline, I was especially fascinated by the effect of mathematics on the
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definition and implementation of programming languages. Inspired by the ad-
vanced facilities that this made possible, it was a slow process to grow in
understanding the teachings of Edsger W. Dijkstra, the apostle of simplicity,
who wrote in 1997 [47]: “All through history, simplifications have had a much
greater long-range scientific impact than individual feats of ingenuity.”

For my ideals of computing research I owe much to Alan J. Perlis, un-
der whose supervision I had the privilege to do postdoctoral research before
permanently moving to a university environment. As I understood him, com-
puting practice is the primary source and ultimate criterion for a theory of
computing. Theoretical formalizations for their own sake will miss the point
and will lead to ‘theoretical practice’, in which ‘theoretical’ stands for ‘not
really’.

From Alan I also learned that one man’s theory is another man’s prac-
tice. My theory may sound like practice to theoreticians, and my practice
may sound like theory to practitioners. Instead of theoretical practice, which
is uninteresting to all except its developers, I hope, however, to have pro-
vided essential components for a practical theory, with contributions that are
worthwhile to both sides.

In the mathematical formalization of a specific problem area, like the syn-
tax and parsing of programming languages, the role of theory is, in principle,
straightforward. Once a useful theory has been developed, it can be taken as
a basis for how programs in this particular area operate. In a general-purpose
formalization of software the situation is different in the sense that a theory
cannot be encapsulated in special-purpose tools.

It is a common mistake to equate theory with the use of formal methods,
for which a rigorous theoretical basis is, of course, necessary. A solid theoretical
foundation is not, however, needed only for formal methods and associated
tools, but also for all design documentation and human communication in
different stages of the software process. This makes it a major challenge to
develop a practical theory for software engineering.

In software engineering a good theory is not just an add-on to current
practices, in order to add better quality to software by more advanced tools.
By providing better understanding of problems it should affect our thinking
independently of available tools. For this reason it should not be surprising
that some of the ideas in this book are not direct formalizations of conven-
tional wisdom on software. Well-established concepts will not be abandoned,
but some new insight will be provided to understand better their role in spec-
ification and design.

For me, the purpose of theory is to help in understanding what I do, at a
level of abstraction that is appropriate for the problems at hand. As a side-
effect, it should allow me to use formal methods to ascertain that I have not
made mistakes in my informal reasoning.

In academia, better understanding of (toy) problems is important in itself.
In software-intensive industry, the goal is not to understand, but to make
profit by constructing useful (non-toy) products. Since understanding is not
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achieved for free, it can be afforded only by the advantages gained by it. With
increasing complexity of evolving products it is, however, not uncommon to
eventually face the situation: when nothing else helps, try to understand better
what you are doing. To cite Dijkstra [47] again: “Because we are dealing with
artifacts, all unmastered complexity is of our own making.”

New ways of thinking can be recommended only if they help in dealing
with some important issues for which previous practices are ineffective. For
the theory presented in this book I argue this to be the case for reasoning on
collective behaviors of objects – both at an informal level and also with rig-
orous formality – and for incremental derivation of specifications and designs
of reactive systems. It is my hope that the simplicity of the fundamentals of
the theory and its intuitively natural relationship to familiar notions will also
persuade the reader of this.

It has taken a long time for the ideas in this book to take their present
shape. Their origins are in joint work with Ralph-Johan Back in the early
1980s, in which the advantages of a simple action-oriented execution model
were recognized in stepwise design of distributed algorithms [20]. Zohar
Manna’s and Amir Pnueli’s work on using temporal logic in the modeling of
distributed programs and reactive systems [151, 172] had a strong influence
on the formal aspects of that work.

In the mid-1980s, when I was still interested in programming languages
rather than formal specification, I was asked to coordinate some cooperative
projects between Finnish industry and academia within a research programme
sponsored by TEKES (Technology Development Centre of Finland). Among
other things, some formal approaches were tried in these projects on certain
strongly simplified problems given by industry. I was then badly disappointed
to realize how unmanageable the suggested formal models were for humans
even in extremely idealized situations.

This gave me a strong feeling that it all could be done a lot better, and
in a subsequent TEKES project (1988–1991) my group got a chance to try
it. As a result, the earlier ideas were extended into an experimental specifica-
tion language DisCo (distributed cooperation), which supported multi-object
actions and an incremental approach to specification, and also had tools for
graphical animation of specifications [127, 93, 92, 187].

When the DisCo project was started we learned that Mani Chandy and
Jayadev Misra had in the meantime used a similar execution model as an
operational basis for a comprehensive theory called UNITY [36]. We also got
familiar with related work by Paul Attie, Michael Evangelist, Ira Forman, Nis-
sim Francez, Shmuel Katz, and others [59, 14, 64, 53, 105]. Having experienced
difficulties in convincing either theoreticians or practitioners of the advantages
of our non-conventional approach, it was reassuring to find others who sought
solutions from similar directions, although with somewhat different aims.

Having started with programming languages we were still mainly con-
cerned about the capabilities to be provided by a specification and modeling
language. Temporal logic and Back’s extension of refinement calculus to deal
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with reactive systems [17] were only in the background, to allow precise dis-
cussion of language semantics. Unlike in UNITY, programming logic was not
yet an integral part of our approach. It was discussions with Leslie Lamport
that made me realize the central role of logic, and I was especially encour-
aged by noticing how closely the canonical expressions in his temporal logic
of actions (TLA) [141] corresponded to what we had been developing at the
language and design methodology levels.

In addition to the people mentioned above, this work has been influenced
by many more, too numerous to list here. Interaction with industry has also
been essential in trying to develop the approach into a comprehensive theory
that would be useful for practice. In its various stages, the work has been
supported by Instrumentointi, Kone, several branches of Nokia, Space Systems
Finland, Valmet Automation, TEKES, and the Academy of Finland.

Of the members of the DisCo team, with whom all the ideas have been
developed, and who have been responsible for all tool development and practi-
cal experimentation, I am especially indebted to Hannu-Matti Järvinen, Kari
Systä, Pertti Kellomäki, Tommi Mikkonen, Mika Katara, Timo Aaltonen, and
Risto Pitkänen, without whom this book would never have reached its present
shape. My warm thanks also go to Ingeborg Mayer and other members of the
editorial staff at Springer for their extremely helpful and efficient cooperation
in the final stages of this writing project.

Finally, I want to thank my wife Liisa, whose loving support and patience
always encouraged me to continue with this work. I dedicate the book to our
youngest daughter Elina (1966–1988), who during her last year of life taught
me more than I have ever been able to teach anybody, about the inadequacy
of both theory and practice, about our inability to understand in the way we
ought to, and about the reality of a pure abstraction – love.

Tampere, Finland, December 2004 Reino Kurki-Suonio
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1

Components of a Theory

Software engineering is about specification, design, implementation, and main-
tenance of software artifacts. Like any engineering profession, it requires vari-
ous kinds of knowledge and skills. One of the necessary ingredients is a theory
that makes it possible

• to formulate, discuss, and reason about the properties that are essential
in software artifacts,

• to specify and design software systems that have the desired properties,
and

• to verify that software designs actually meet the given requirements.

The characteristic properties that such a theory should help to deal with are
those of the dynamic behaviors that are generated by the execution of software.

Since it is software that has made it possible to create artifacts with in-
volved dynamic behaviors, managing this kind of complexity has become an
issue only with the proliferation of software. The same problem arises, how-
ever, in any engineering of complex systems. Therefore, a theory that helps in
managing the logical complexity of dynamic behaviors is also applicable more
generally. Due to the non-physical character of software, software engineering
faces the problem, however, in a pure form, where physical theories play no
essential role.

Dealing with the complexity of dynamic behaviors is what this book is
all about. The main emphasis is on a theoretically justified specification and
design method, which supports incremental derivation of operational spec-
ifications that have the desired properties. The specific focus of this book
is on reactive systems, i.e., on systems that are in continual interaction with
their environments. By the environment we understand in this context human
users, physical environment, and other reactive systems that interact with the
system under consideration.

Although the attribute ‘reactive’ emphasizes the most distinctive charac-
teristic of the systems that we are interested in, there are other frequently
used terms that characterize some more technical aspects of such systems:
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• Reactive behavior is usually associated with embedded systems, in which
software is an integral part of devices that have been designed for specific
purposes. The hardware and the software of such dedicated systems have
to be designed together, which is usually referred to as codesign.

• Real-time properties are often crucial in the requirements for reactive
systems, in which case the term real-time system is used. Depending on
whether real-time requirements are essential for correct behavior, or are
formulated as statistical requirements that have to be satisfied on the av-
erage, real-time systems are called hard or soft.

• When a system consists of cooperating subsystems that are physically
or even geographically distributed, it is called a distributed system. The
subsystems of a distributed system are often reactive, and real-time re-
quirements may also be associated with them.

• The purpose of a real-time system may be to monitor and control some
physical phenomena in its environment. In addition to discrete states, the
specification of such a system may need to refer to physical quantities
that change as continuous functions of time. Such systems are referred to
as hybrid systems.

The purpose of this introductory chapter is to outline the components
that are needed in a theoretically justified approach to reactive systems. The
structure of the chapter is as follows:

• In Sect. 1.1 we briefly analyze the relationship between theory and practice
in software specification.

• Section 1.2 outlines some general requirements for a theory that would
provide comprehensive support for the specification and design of reactive
systems.

• Section 1.3 gives a brief outline of the rest of this book.

1.1 The Role of Theory

We start by inspecting the role of an underlying theory in the specification
and design of software.

1.1.1 Theory and Practice

The history of software engineering is still very brief. In just a few decades,
software has become a ubiquitous basic technology for the implementation of
complex systems. The size and complexity of software artifacts have grown
immensely at the same time, and the qualitative character of software and its
applications have also changed rapidly.

These advances in the state of the art have been largely based on practical
rather than theoretical understanding of software. Also, due to the speed of
development, theoretical understanding of software has not had much time to
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mature. As a result, the need of theory is often underestimated in the practice
of software engineering.

Although the driving forces for theoretical and practical developments are
different, useful theory of software cannot be developed in isolation from un-
derstanding what the essential practical problems in software and software
engineering are. Otherwise, theoretical work would remain as useless formal-
ization. On the other hand, the need for a solid underlying theory is also
becoming more and more evident in software practice. We are already fac-
ing the situation where some software cannot – or should not – be developed
without theoretically justified confidence in its behavior.

1.1.2 What Is Theory?

In a broad sense, anything that provides understanding at some level of gen-
erality can be called theory. The Oxford English Dictionary explains theory,
among other things, as “systematic conception or statement of something;
abstract knowledge, or the formulation of it.”

For theoretical understanding of practical artifacts it is important that a
theory supports thinking in terms of abstractions, which allows us to omit
those aspects of the reality that can be managed trivially, and to concentrate
on those aspects that at least potentially may cause problems. Different the-
ories may support different kinds of abstractions, which is useful for taking
multiple views of the same artifacts. For instance, focusing on logical behav-
iors abstracts away all physical characteristics, which are also important in
all digital devices.

In particular, a theory of software (or any systems with behavioral com-
plexity) should provide a rigorous basis for

• specification, i.e., formulation of the required behavioral properties,
• design methods, i.e., systematic methods for developing systems that meet

the given requirements, and
• verification, i.e., reasoning on whether the required properties are, indeed,

satisfied by the design.

In addition, effective use of a theory should also be helpful for

• validation, i.e., checking that the design (or its eventual implementation)
meets the actual needs from which the requirements were derived.

1.1.3 Reality and Abstractions

Every theory has some inherent limitations. Since abstractions do not model
all properties of reality, a theory can be used only for those properties for
which it has been designed.

Since a theory deals with abstractions, it does not say anything about the
reality itself. Therefore, theoretical results and proofs are relevant for reality
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only as far as this obeys the basic assumptions that have been made in the the-
oretical models. The validity of such assumptions will always remain beyond
the reach of mathematical proofs. In addition, no formal proof of software can
show that the original informal requirements have been correctly formalized.
This is why formal methods can never remove the need for validation.

Although these remarks about distinguishing between the reality and ab-
stract models are a truism, there is considerable danger for confusion between
the two, especially in connection with software.

A written program seems to belong to reality, as its execution on real
computers gives rise to those real phenomena that we are interested in. We
are not, however, interested in these physical phenomena as such, but on their
interpretation as computations. Since widely different physical representations
can be used for computations, a program is, in fact, an abstraction that is
independent of the actual phenomena that arise in its real executions, and it
can therefore be subjected to formal analysis and proofs.

The relevance of any proofs of programs always depends on some assump-
tions, like absence of ambiguities in the programming language that is used,
correctness of all system software that it relies on (compilers, operating sys-
tems, database systems, communication protocols, etc.), fault-free operation
of the hardware involved, and satisfaction of (often implicit) assumptions on
ranges of numbers, amounts of data, frequencies of communication, etc. All
these are non-trivial assumptions, as is shown by the multitude of bugs in
commonly used system software, famous design errors in hardware, and the
Y2K problem, for instance.

Worse still, abstractions of interactive behavior make assumptions on all
partners of interaction. Therefore, reactive systems cannot be specified inde-
pendently of modeling the environments in which the systems are intended
to be used. Although assumptions on the environment can be formalized in
more and more detail when increased confidence in the satisfaction of these
assumptions is required, it is important to understand that the reality itself
always escapes full formalization.

For all these reasons, theoretically well-justified formal methods and proof
techniques can never replace testing and validation. Instead, the two kinds of
approaches complement each other and should be used in tandem to increase
our confidence in complex systems.

1.1.4 Role of Theory in Engineering

Natural sciences and the associated mathematical theories provide the basis
for theoretical understanding in traditional engineering disciplines. In practi-
cal engineering work one may not need to go to these fundamentals all the
time, but it is always possible to resort to them when necessary.

These fundamentals are considered essential in engineering education, and
one would not think of teaching only practical engineering skills without as-
sociated theoretical understanding. This shows that the importance of a uni-
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versally accepted theoretical framework is recognized, even though practical
engineering standards and industrial practices may be more important in ev-
eryday engineering work.

In software engineering the situation is a bit different. Obviously, physics
and calculus do not provide a useful basis for understanding software. Since
no comparable and generally accepted theoretical basis has been agreed on,
software-engineering education typically concentrates on programming skills,
available tools, standard practices, organization and leadership of software
projects, etc. Instead of a general theory of programs, discrete mathematics is
taught, as well as specialized mathematical theories that are relevant in com-
puter science, like those needed for understanding compilers, computability
and complexity issues, efficiency of algorithms and data structures, etc. Al-
though all of these are essential for the software-engineering profession, they
are no replacement for an underlying theory of software.

1.1.5 Emerging Need for a Theory

The need for a general theory depends greatly on the size and complexity of the
artifacts to be constructed, and on the severeness of the potential consequences
of errors in them. Just plain logical thinking without any special theory is
sufficient for understanding short and simple programs. In larger programs,
simple programming errors can be avoided by using appropriate tools, and
an error can often be understood and corrected without much theory, once
somebody points out under which circumstances it occurs.

This has led to a situation where the significance of high-level program-
ming languages and other tools, maintainable software architectures, team-
work skills, systematic testing methods, good management of the software
process, etc., is recognized in software-intensive industry, but no stringent
need is felt for competence in an underlying theory of software.

With growing requirements for the degree of confidence in software, the
situation is, however, becoming unsatisfactory. This is the case, in particular,
with software that is used to control life-critical systems, and also with em-
bedded consumer products like automobiles, where human control more and
more often takes place through software interfaces. Networking of systems
has also greatly increased the need for trustworthiness even in the presence of
deliberate misuse and malicious attacks.

Although understanding of theoretical foundations is only one aspect in
producing high-quality software, its importance will necessarily increase when
the field becomes more mature, and when consumers become more conscious
about software quality.

Review Questions

Question 1.1.1 What are the main purposes for which a theory of software
can be used?
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Question 1.1.2 What makes interactive behaviors more difficult to specify
than non-interactive behaviors?

Question 1.1.3 What makes software engineering fundamentally different
from other engineering disciplines?

1.2 Parts of a Comprehensive Theory

In computer science and software engineering, people are used to develop and
deal with different kinds of abstractions. The problem is therefore not in the
lack of useful abstractions, but in their incompatibilities, and in the lack of a
comprehensive theory that would support them.

In this section we discuss different kinds of abstractions that should fit
together in a balanced manner and without incompatibilities, in order that a
theory would be useful for the practice of software specification.

1.2.1 Spectrum of Abstractions

Specification formalisms are often classified into property-oriented and model-
oriented ones. The purpose of the former is to express required properties
independently of how they can be implemented. In the latter, specifications
are given as operational models, which can be understood as ‘abstract imple-
mentations’.

Logical foundations:
• underlying philosophy
• programming logic

Design methodology

Model-oriented abstractions:
• language concepts and paradigm
• abstract execution model

Reality

abstraction

reification

Fig. 1.1. Parts of a comprehensive theory

A practical theory cannot be limited to either category alone, since it has
to support both kinds of views. Figure 1.1 outlines the spectrum of abstrac-
tions that a successful theory has to address. Logical foundations constitute
the high end, which has to support property-oriented abstractions. Design
methodology has been placed in the middle, between logical foundations and
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model-oriented abstractions, since it deals with the design of operational mod-
els and requires language support for this, but also needs to be based on solid
logical foundations.

1.2.2 Development of Abstractions

Two opposite directions can be seen in the process of developing abstract
concepts for software, abstraction and reification, as shown in Fig. 1.1.

Abstraction

Historically, and in programming education, the dominating direction for de-
veloping understanding of software is to start with concrete programs and
to design abstractions in the bottom-up direction. Real computer architec-
tures and machine languages are then taken as the reality, for which useful
higher-level abstractions are gradually developed in terms of language ideas
and language-related programming concepts.

This approach has been very successful, and has led to effective machine-
independent languages and tools, to reusable design patterns, and to infor-
mal design methods for managing the complexity associated with software.
In particular, these abstractions help in the architecture of software, i.e., in
structuring it into units that have well-defined properties and relationships.

Together with a specification of what a program is intended to accom-
plish, such concepts make it easier to check whether a final product meets
the intentions. However, this abstraction process assigns no abstract mean-
ing to programs as such. Therefore, these concepts are not directly suited
for addressing semantically relevant relationships between programs, such as
program equivalence.

On the other hand, being independent of the meaning of programs, these
abstractions are relatively insensitive to what kinds of essential properties
programs are interpreted to possess. As an extreme example of our freedom
in this interpretation, consider being interested only in the side-effects on
console lamps, for instance. In this connection it may be interesting to recall
that the machine instructions of some early computers had side-effects on a
loudspeaker, which allowed us to interpret the meaning of a program as the
tune played by its execution.

Reification

The reification process starts with the fundamental question of what the es-
sential properties of programs really are. Mathematical abstraction of the
meaning of programs allows us to discuss rigorous reasoning on these proper-
ties, and can also give a solid basis for design methods.

One of the problems with this top-down direction is that it is possible
to start with different kinds of underlying philosophies. It may, in fact, be
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the case that no single philosophy will ultimately be good for all kinds of
programs. The essential properties in mathematical subroutines, interactive
systems, and real-time control software, for instance, seem to be very different,
and specialized theories for them may therefore give better results than a
single unified theory of programs.

Another problem with top-down development of abstractions is how to
integrate the resulting rigorous methods smoothly into the software process.
In particular, bottom-up development of abstractions has led to extremely
complicated languages like C++, and gaps and incompatibilities are therefore
unavoidable between mathematically manageable basic concepts and those
that are currently advocated in practice.

1.2.3 Execution Models

Abstract execution models, or abstract machines, provide a possible first step
in providing abstractions of software. In the specification of software, such
models are important for operational specifications that can be executed, sim-
ulated, or animated. To allow effective reasoning, the models should, however,
be simpler than real execution of programs on existing computer architectures.

Turing machines, finite automata, and Petri nets are examples of abstract
execution models that have been designed for different theoretical purposes.
The notion of Turing machines has been used successfully as a basis for the
theory of computability and for complexity theory, but it would be totally
inapplicable as a basis for discussing the specification and design of software.
Finite automata, on the other hand, are suitable for modeling special classes
of software, like communication protocols, for instance, and Petri nets have
been designed for the modeling of parallelism in concurrent systems.

The execution model to be used in this book is a simple action-oriented
execution model, which will be explained in Chap. 2.

To distinguish between executions of real systems and those in a model, the
former will be called computations in the following, whereas those in abstract
machines will be referred to as executions.

Formal execution models allow rigorous reasoning on executions in ab-
stract machines, but they do not assign abstract mathematical meanings to
the models. Therefore, they may be useful in the modeling of software, but
as such they are insufficient to support a comprehensive theory. In particular,
without additional information they cannot be used to address the fundamen-
tal question of whether two different systems are equivalent or not, or whether
one of them models a correct implementation of the other.

1.2.4 Language Concepts

Programming concepts and paradigms provide the conceptual basis for the
constructs and facilities in programming languages. Therefore, the history of
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high-level languages and the associated paradigms reflects the development of
our conceptual understanding of programs.

Programming language mechanisms are, however, often treated as if they
would be the primary objects of concern, instead of the underlying concepts
that they should be designed to reflect. For instance, extending program-
ming languages to deal with concurrency has often been discussed as if this
would primarily be a question of language constructs and their implementa-
tion mechanisms, not a question of how concurrency affects the fundamental
properties of programs.

In each case, language concepts are an important step beyond execution
models. In particular, high-level programming languages have declarative fea-
tures, which allow much freedom in algorithmic implementation. Program-
ming language concepts therefore also provide useful abstractions for opera-
tional specifications, although the latter may have features that prevent au-
tomatic compilation into executable programs, in general.

One of the idealistic goals in developing high-level languages has been
that they would by themselves be sufficient for discussing the properties of
programs, so that no higher-level abstractions would be needed on top of
them. For large and complex programs this has, however, turned out to be
unrealistic.

One reason for this is that, although high-level languages aim at simplic-
ity, they are not at all simple. In fact, when all the ingredients for a modern
high-level language are put together, their combined effects are bound to lead
to complexities and ambiguities that are difficult to foresee and to manage.
For this reason, some theoreticians have often argued for much simpler pro-
gramming languages, but the practice has not followed their advice – and
often with good reason. In each case, much of the complexity of current pro-
gramming languages has to be abstracted away in order to obtain a practical
theory.

A good example of current trends in programming languages is object ori-
entation, which has proved to be a very successful paradigm. However, if the
facilities in object-oriented programming languages are adopted in specifica-
tions as such, without abstracting away some of the associated complications,
specifications are not any easier to reason about than programs.

1.2.5 Underlying Philosophy

Each theory has an underlying philosophy, which determines informally the
semantic properties that one wishes to express and reason about.

One of the fundamental distinctions to be made at this level is whether the
purpose of executions in a model is thought of as transforming input to output,
or as continued interactions between a system and its environment. Depending
on this distinction, the semantics of an approach is either transformational or
reactive.
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In this connection it should be noticed that a program itself is always just
a program, not a transformational, reactive, real-time, or some other kind of
a program. Such distinctions are not in the programs themselves, but in the
theories that are useful for reasoning on their properties. This is analogous
to having just one physical reality, but different kinds of physical theories,
like classical Newtonian physics, theory of relativity, and quantum mechanics.
Different theories of software make it possible to concentrate on different kinds
of properties, and the properties that are crucial depend on the intended use
of a program in its intended application environment.

Transformational Philosophy

With transformational semantics, a program can be visualized as a black box,
which, for any input x, determines a corresponding output f(x), as illustrated
in Fig. 1.2. Instead of a purely functional correspondence between input x and
output f(x), a specification may also allow several alternatives for f(x), and
for some x it may allow the program to give no output at all.

�

input

� � � �

output

Fig. 1.2. A transformational system as a black box

· · ·

initial state
with input �

non-visible steps
final state

with output
� � � �

Fig. 1.3. Illustration of a transformational black-box execution

In an operational model of a transformational system, computations are
modeled to proceed in discrete steps, starting from an initial state, where
input x has already been read in. Intermediate steps take place in a black
box and are therefore not visible. If the execution terminates, output f(x) is
eventually available in the final state as shown in Fig. 1.3. Nonterminating
and aborted computations give no value for f(x).

Reactive Philosophies

With reactive semantics, a system is assumed to be in continual interaction
with its environment. Described as a black box, the input–output relationship
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stimuli and
responses

Fig. 1.4. A reactive system as a black box
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Fig. 1.5. Illustration of a reactive black-box execution

of transformational systems then generalizes to stimuli and responses with
more complex causal–temporal relationships (see Fig. 1.4).

In an operational model of a reactive system, computations are normally
understood to be nonterminating. In interleaving models, stimulus steps, re-
sponse steps, and non-visible internal steps are all interleaved as illustrated
in Fig. 1.5, i.e., all steps are assumed to be taken in some sequential order
independently of the ‘execution agents’ by which they are performed. In con-
trast, true concurrency means that the concurrency of execution steps is also
modeled. Instead of total ordering, this leads only to a partial order between
the steps in an execution.

Under the so-called synchrony hypothesis, which essentially states that the
system is ‘infinitely fast’ in comparison to its environment, no new stimuli
can appear while a response is being computed. This leads to simpler models,
since it is then possible to consider a reactive execution as a sequence of trans-
formational executions. The initial state of each execution is then, however,
affected by the history of previous executions.

In principle, execution steps can be understood either as state changes or
as events with identification labels. Depending on this choice, an approach is
called either state-based or event-based.

In general, there are several possible continuations for a given prefix of
a reactive execution. Therefore, another basic question in reactive philoso-
phies is whether one wishes to express properties of individual sequences of
executions or of the whole trees that contain all possible continuations of an
initial prefix. Depending on this choice, an approach is called linear-time or
branching-time. The most obvious limitation of linear-time approaches is that
stochastic properties of possible executions cannot be formulated as properties
of individual linear executions.
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Since different approaches to the modeling of reactive systems differ in
their basic philosophies, they cannot be directly mapped into each other. This
has caused some misunderstanding between their proponents. Such misunder-
standing is often a sign of confusion between reality and a theory. Once one
learns to think in terms of a given theory, one starts to consider only those
aspects of the reality to be important that this theory is able to describe, and
tends to ignore those aspects that have been abstracted away. Since different
theories abstract away different kinds of properties, it may then be that only
one’s own theory can express what one considers important.

In choosing between different alternatives for a reactive philosophy, deci-
sions are mostly based on intuition and subjective preferences. Ultimately, to
understand the consequences of such selections, one should compare all as-
pects of fully developed theories, including their support for languages, tools,
and design methods. An important point that needs to be understood in this
context is that increasing the expressiveness of a formalism also adds to its
logical complexity, and the main enemy of intellectual management is unnec-
essary complexity.

The choices on which the theory of this book is based are the following:

• The approach is ‘truly reactive’ in the sense that it is not based on the
synchrony hypothesis.

• The approach is state-based, although one can also see some event-oriented
flavor in it.

• Reasoning in the approach is based on the interleaving model, which is
simpler than true concurrency, but can still also be used for the modeling
of distributed concurrency.

• The approach is linear-time, which means that specifications determine
properties that must be satisfied by all execution sequences.

1.2.6 Programming Logic

Programming logic is a formal system for expressing properties of programs
and to reason about them. In connection with state-based reactive philoso-
phies, temporal logics are the primary vehicles for this. The choice in this
book is a variant of linear-time temporal logic called temporal logic of actions
(TLA), which will be discussed in Chaps. 3 and 4.

In principle, an expression in a programming logic is a specification for
a software system in the sense that it expresses the logical meaning of such
a system.1 In other words, expressions in the logic constitute the semantic
domain for the systems. Two systems are equivalent if they have the same
meaning in this logic, and a system is a correct implementation of a given
specification if its meaning logically implies the specification.

1To be more precise, the logical expressions that will be used in this book de-
scribe not only software, but any reactive systems together with their intended
environments.
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operational
non-operational

Fig. 1.6. The ‘iceberg’ of specifications

No matter how the logical meaning of systems is defined, if the seman-
tic domain is restricted to correspond to operational systems only, it does
not possess mathematical properties that would be easy to manage. However,
by allowing the domain to contain also non-operational ‘meanings’ that have
no operational interpretation, mathematically more elegant structures can be
achieved. This is illustrated in Fig. 1.6 as an ‘iceberg’, where the tip corre-
sponds to those specifications that have an operational interpretation. The
purpose of a specification process is to lead to specifications with their mean-
ings within this tip, but the full range of the ‘iceberg’ needs to be available
during this process.2

1.2.7 Design Methodology

As such, design methods do not provide additional abstractions to a theory.
However, as shown in Fig. 1.1 (p. 8), they have a central position in a prac-
tical theory, providing a link between logical foundations and model-oriented
abstractions.

Traditionally, design methods have been developed with a view on model-
oriented abstractions that can be supported by programming languages and
various kinds of tools for manipulating software modules. This means that the
emphasis has been on structural aspects of software, and on issues of syntactic
compatibility.3 In particular, attention has been paid to structural modular-
ity, encapsulation of design decisions within modules, and to the design of
module interfaces. The role of design methods has then largely been in pro-
viding guidelines for proper module design, in graphical illustrations for the
structural aspects of the design, and in systematic documentation of design
decisions.

2The same phenomenon is well known from extending the set of natural numbers
to real and complex numbers. In electrical engineering, for instance, one frequently
needs complex numbers in calculations, even when the final results are known to be
real.

3In syntactic aspects we also include ‘static semantics’, which makes it possible
to check that variables, objects, modules, etc., are utilized in accordance with their
definitions.
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The main problem with such design methods is that no meaning is asso-
ciated with the system under design, except in terms of some scenarios of the
intended ‘dynamic properties’. Since such methods support rigorous inspec-
tion of only syntactic and structural properties, until the dynamic properties
have been determined by an essentially implementation-oriented description,
the slogan ‘correctness by design’ remains an empty phrase with them.

This problem can be overcome if design methods have a solid foundation
in programming logic. Such a foundation makes it possible to reason about the
semantic properties of a design already before any implementation-oriented
descriptions are available.

Design methodology is, in fact, a crucial part in integrating the various
aspects of a practical theory. It has to be rooted in the logical foundations of
the approach, but it also affects the concepts of modularity that need to be
supported by the design language. In fact, design methods that are supported
by a theory reveal whether the abstractions at the different levels fit together
in a reasonable manner. It should not be expected, as it is often done, that one
could build a useful approach by taking a heterogeneous set of abstractions and
associated tools, and constructing artificial bridges between them to overcome
gaps and incompatibilities.

In other words, a good theory is not for constructing tools by which theo-
retically justified quality could be added to an arbitrary software process. A
theory is a basis for thinking and understanding, and it necessarily also affects
the software process, in particular the methods and ways of thinking that are
used in early stages of specification and design. This is perhaps the biggest
obstacle in adopting a theory in practice.

Review Questions

Question 1.2.1 Why is an execution model insufficient as such as a basis
for a theory of programs?

Question 1.2.2 Why is any classification of programs (into transforma-
tional, reactive, and real-time programs, for instance) actually a classification
of theories, not of programs?

Question 1.2.3 What is the difference between transformational and reac-
tive philosophies?

Question 1.2.4 What is meant by an interleaved execution model?

Question 1.2.5 What is meant by the synchrony hypothesis?

Question 1.2.6 What is the difference between state-based and event-based
approaches?
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Question 1.2.7 What is the difference between linear-time and branching-
time approaches?

Question 1.2.8 Why is it reasonable that the semantic domain also contains
other ‘meanings’ than those that have operational interpretations?

Question 1.2.9 What is the role of design methodology in a theory of pro-
grams?

1.3 The Structure of the Book

A comprehensive theory for reactive systems will be described in this book.
The core chapters of the book have been grouped into three parts. These three
parts are preceded by Part I, Prologue (this chapter), and followed by Part
V, Epilogue (Chap. 11), which take a more general look at the characteristics
of the approach.

Although mathematical concepts and results are effectively utilized in the
book, formal theorems and proofs are avoided in the presentation. At the end
of most sections, some of the key points are reiterated in the form of simple
review questions given to the reader, and exercises of varying difficulty are also
given. Each chapter ends with some notes on related history and literature.

No single running example was found suitable to illustrate the different
topics discussed in the book. Instead, example specifications of varying size
and complexity are given throughout the book. Although these are only ‘aca-
demic exercises’, the reader is encouraged to study them also in those chap-
ters that he/she will not otherwise read carefully. Although the examples are
mostly placed after the text that they are supposed to illustrate, it may often
be wise to study them in parallel with the text.

1.3.1 Part II: Fundamentals

Part II of the book addresses the fundamental ideas of the approach and
consists of three chapters.

Since model-oriented abstractions are the most natural starting point for
software engineers,

• Chapter 2 introduces the execution model of action systems, which provides
the basis for operational interpretation of specifications in this theory.

This execution model is action-oriented in the sense that execution consists of
an interleaved sequence of actions, which are considered to be atomic units of
execution. To fulfill its role in the theory, the execution model is very simple,
and has no built-in support for any program structures. For instance, unlike
commonly used execution models, it has no inherent bias towards sequential
control threads. As such it provides, however, a suitable basis for operational
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specification of reactive systems, and of any systems in which concurrency and
distributed execution is essential. Although the execution model could also be
used as a basis for a programming language, this is not a relevant question in
the context of this book.

To give a solid basis for the theory,

• Chapter 3 is devoted to the logical foundations of the approach.

As the logical basis we take temporal logic of actions (TLA), which is a vari-
ant of linear-time temporal logics. TLA is used here to express and reason
about properties of ‘closed systems’, where the environment of a reactive sys-
tem is also included. An important point in fitting the different parts of the
theory together is that the action-oriented execution model provides a natural
operational interpretation for TLA expressions in a certain canonical form.

To help readers who do not have strong background in logic, but who
would like to understand what it means to carry out formal proofs in detail,

• Chapter 4 gives an introduction to formal reasoning in TLA.

The deduction rules that are discussed in this chapter are not essential for
understanding how the theory can be used in practice. In particular, the reader
is warned of the fact that even ‘obvious’ properties may lead to long and
complicated proofs, when carried out in detail, and that less formal proofs in
English may be perfectly adequate in practice.

1.3.2 Part III: Building a Practical Theory

Part III of the book addresses questions on building a practical theory on the
fundamentals described in Part II, and consists of four chapters.

Since practical use of the theory requires a specification and design lan-
guage,

• Chapter 5 is devoted to language aspects, by which notions like types,
finite-state structures, object-oriented classes, relations between objects,
and multi-object actions can be built on top of the primitive execution
model and can be rigorously reasoned about.

The language ideas presented in this chapter will be used in the rest of the
book. The main purpose of the chapter is not, however, to give a detailed
language, but to present the main problems in designing a language as part
of the theory.

Of special importance in this chapter is how the facilities of object-oriented
programming languages can be abstracted to a level that is appropriate for
specifications. In particular, single-object ‘methods’ and communication pro-
tocols between objects are abstracted into multi-object actions, which allows
reasoning on collective behaviors even in early stages of specification and de-
sign.

As presented in Fig. 1.1 (p. 8), design methods have a central role in our
theory. To discuss them,
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• Chapter 6 introduces the basic mechanisms to support design methods.

The main principle here is that specifications are constructed in incremental
layers, and that the design can therefore proceed incrementally, with rigorous
support for the preservation of behavioral properties in each step. The mod-
ularity of the design language has been designed to support such a layered
structure, where a specification layer need not correspond to a natural mod-
ule in an implementation, but may, instead, correspond to a concern that cuts
across them in an aspect-oriented manner.

The methodology gives a theoretically solid foundation for a specification
and design process that can start at a high level of abstraction and proceed
by stepwise refinements towards an implementable form. It also supports the
preservation of certain crucial properties (safety properties) in each refinement
step, without a need to resort to explicit proofs.

To allow object-oriented specification in the full meaning of the word,

• Chapter 7 extends the discussion of language aspects to aggregate objects
and to object-oriented inheritance.

This is done in such a manner that objects of a subclass always satisfy all prop-
erties specified for the base class. This also holds when multiple inheritance
is used.

Modeling reactive systems as closed systems raises issues of partitioning
a closed system into independently implementable components. To deal with
such matters,

• Chapter 8 analyzes how interfaces can be defined in closed-system specifi-
cations, and under which conditions components in a closed-system spec-
ification can be refined independently.

A special characteristic of the design method is that interfaces between com-
ponents can first be given at a high level of abstraction; a form that models
their implementation can then be achieved by refinements.

Although partitioning of closed systems has both theoretical and practical
interest, no language support is provided for it, and the reader may wish to
skip this chapter during the first reading of the book.

1.3.3 Part IV: Distributed and Real-Time Systems

Part IV of the book provides excursions to two more specific areas, which may
not interest all readers.

Historically, the development of this theory started with an attempt to
model distributed systems at a high level of abstraction, and the notion of
multi-object actions was originally proposed for this purpose. Addressing the
specific problems of distribution,

• Chapter 9 analyzes the applicability of the interleaved execution model
to distributed systems, and how action systems can be implemented in a
distributed fashion.
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In particular, it is shown in this chapter that the simple interleaved execu-
tion model does, indeed, also provide a suitable basis for the modeling of
distributed systems, in which real concurrency is involved.

Since real time is essential for many reactive systems,

• Chapter 10 describes how the theory can be applied to model and reason
about real-time properties.

The treatment in this chapter also covers hybrid systems, in which continuous
state functions of the environment are also relevant.

Bibliographic Notes
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specification language that combines such a process-algebraic approach with
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models, was first discussed by Lamport [136]. An early example of such ex-
ecution models is the one given by Lynch and Fischer [149]. Partial-order
and interleaving semantics for CSP-like languages have been compared by
Reisig [176].

Temporal logic was introduced to state-based reasoning on reactive systems
by Pnueli [170, 171]. More recent textbooks by Manna and Pnueli [152, 153]
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by Harel and Pnueli [78]. The inherently greater complexity of reactive sys-
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Wegner [193], for instance.

Temporal logic of actions (TLA) was developed by Lamport [138, 141]. One
of its goals was to achieve the situation that an implementation relationship
between specifications corresponds to logical implication. TLA+ [144, 145] is
a language for constructing TLA specifications. The approach in this book is
based on experiences with an experimental specification language DisCo [93,
124, 49], in which TLA has been used as the logical basis.

While most research has concentrated on limited aspects of a theory,
Chandy’s and Misra’s UNITY [36] was an important milestone in develop-
ing a comprehensive theory for distributed systems. Its essential components
are an execution model and an associated language (the UNITY language),
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larity constructs that support certain design methods.

Although the theory presented in this book has been developed indepen-
dently of UNITY, and its goals are somewhat different, there is much sim-
ilarity between the two approaches. The most important differences will be
discussed at the end of those chapters where the different parts of the theory
are addressed.



Part II

Fundamentals



2

Towards an Action Language

Operational specifications are based on an abstract execution model. On one
hand, this makes specifications useful as models for implementation in terms of
programming concepts. This viewpoint dominates for execution models that
are derived from real computations by abstraction (see Fig. 1.1, p. 8). On
the other hand, an abstract execution model can also serve for operational
interpretation of expressions in a programming logic, which is emphasized by
the reification direction in Fig. 1.1.

The approach in this book is based on an action-oriented execution model,
which provides a basis for an action language. Specifications given in the action
language are called action systems. Action systems are operational models
that have a close connection to a programming logic.

Every piece of software consists of data structures and of instructions for
their manipulation. Correspondingly, an operational model needs to model
the state of a system and the events by which this state can be changed.
These questions are discussed for action systems in this chapter, which has
the following structure:

• Section 2.1 discusses the use of variables for modeling the state of a system.
• The notion of actions for modeling dynamic events in a system is intro-

duced in Sect. 2.2.
• Models that are not restricted by the idea of sequential execution threads

need a notion for an ‘execution force’ that can enforce the execution of ac-
tions. Such a force is provided by the notion of fairness, which is described
in Sect. 2.3.

• Section 2.4 discusses how an action system can be used as a model for an
implementation.

A simple example of an embedded system is used throughout this chapter to
illustrate the concepts introduced.
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2.1 Modeling of System State

The notion of state is obviously central in a state-based approach. Before
elaborating on it, we introduce the example that will be used in this chapter.

2.1.1 An Introductory Problem: Gas Burner

Controling a gas burner will be used to illustrate the idea of action systems.
The problem is discussed here in a somewhat unstructured and informal man-
ner; the main purpose is to give an intuitive idea of the action-oriented exe-
cution model, and to provide motivation for the more formal and structured
discussions that will follow.

In this example we assume that there are actuators by which a computer
can open and close a gas valve, as well as turn an ignition transformer on a
gas burner on and off. In addition, two sensors are assumed, by which the
computer can sense whether a thermostat indicates a heat request from the
environment, and whether there is a flame in the burner.

The requirements for the design are given in an informal and incomplete
form. In particular, we ignore here all real-time requirements, to which we will
return in Chap. 10. The following initial formulation of the required properties
is given:

• A heat request from the environment should cause the system to open the
gas valve and to turn the ignition transformer on.

• When the flame has ignited, the ignition transformer should be turned off.
• When the heat request goes off, burning should be stopped by closing the

gas valve.
• If the flame does not ignite, the ignition transformer should be turned off,

and the gas valve should be closed.
• If the flame goes off during normal burning (flame failure), the gas valve

should be closed.

2.1.2 State Variables

At any moment of time during an execution, the state of an action-system
model is composed of the current values of some state variables. When there
is no danger for confusion, state variables are just called variables.

Some of the variables in a model are essential variables in the sense that
the whole purpose of the model is to specify how the values of these variables
are changed in executions. In addition to essential variables one usually needs
auxiliary variables, the purpose of which is to make it possible (or at least
easier) to describe how the values of the essential variables are changed.

The essential variables in the gas-burner example are four Boolean vari-
ables that model the states of the two sensors and two actuators attached to
the burner:
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• variable req e indicates whether a heat request has been turned on by the
environment,

• variable flam e indicates whether a flame is sensed by the flame sensor,
• variable flow e indicates whether the control system has opened the valve

for gas flow, and
• variable ign e indicates whether the ignition transformer has been turned

on by the control system.

The suffix ‘e’ is used here in order to emphasize that these variables model
the state of the environment of the control system. Initially, all of them are
assumed to have the value false.

Since it seems unreasonable that the control system could always access
environment variables directly, corresponding variables are also needed in it:

• variable req s indicates whether the control system has registered a heat
request from the environment,

• variable flam s indicates whether the control system has registered that
a flame is sensed by the flame sensor,

• variable flow s indicates whether the control system has opened the valve
for gas flow, and

• variable ign s indicates whether the ignition transformer has been turned
on by the control system.

Also these are assumed to be initialized as false. Suffix ‘s’ is used to indicate
that they model the state of the control system itself. Although the explana-
tions for the two flow and ign variables are identical, these are not the same:
flow e and ign e model the physical states of the two actuators, whereas
flow s and ign s model the information that the control system has about
these states.

Since the purpose of the model is to specify how the actuators should
behave as a response to state changes in the sensors, the four system variables
are auxiliary variables, whose purpose is only to make it possible for the
control system to control the actuators appropriately.

The state space of an action system consists of all possible states in it, i.e.,
of all possible assignments of values to its state variables. With eight Boolean
variables the gas-burner system is a finite-state system with 28 = 256 possible
different states. All of these will not, however, be reachable in the executions
that will be specified for the system.

In general, state variables could also have infinite ranges of values, like
integers. Notice that the fact that every variable in a compiled program has a
finite range does not imply that a theory should be built on this assumption.

2.1.3 Components and Interfaces

Action systems will be used in this book as closed-system models, in which
the system to be implemented and its environment are both included as a
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system part and an environment part, respectively. More generally, a closed
system may be seen to consist of any number of interacting parties, each of
them having all the others as its environment. Such parties in a closed-system
model will be called its components.

Each state variable belongs to a specified component and is said to be
local to that component. In particular, variables that are local to the system
part are called system variables, and those in the environment part are called
environment variables.

Interaction between components takes place by changes in the values of
shared interface variables. These are state variables that are accessible also
to other components than the one to which they belong. Other variables are
private variables in the components to which they belong.
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Fig. 2.1. Illustration of components and variables in the gas-burner example

The gas-burner example has already been described as consisting of two
components: the system component, which consists of the control system, and
the environment component, which encompasses all the rest. Since it is rea-
sonable to assume that the environment has in this case no access to variables
in the system component, these are assumed to be private to that component,
whereas the four environment variables are considered as interface variables
that can be accessed by both parties The situation is illustrated in Fig. 2.1,
where interface variables have been drawn to stick out from a component, and
the arrows show the direction in which information is supposed to flow, when
these variables are accessed from outside.

2.1.4 Input and Output Variables

In traditional (non-reactive) models of software there is a clear separation
of when input can be accepted from the environment, and when output can
be given to it. When the synchrony hypothesis is not made (see Sect. 1.2.5,
p. 13), this is no longer true for models of reactive systems: stimuli from
the environment and responses by the system can usually be interleaved in a
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more liberal manner. For instance, in the gas-burner example it is reasonable
to assume that a heat request may go off already before the system has had
time to react to it.

This freedom of the components to compete for accessing interface vari-
ables is often managed by partitioning the interface variables of a component
into input variables, through which its environment can give input (stimuli)
to it, and output variables, through which it can give output (reactions to
stimuli) to its environment. The component itself can only read its input vari-
ables, whereas other components can only write to them. Correspondingly, a
component can write to its output variables, whereas other components can
only read these.

In the gas-burner example, variables req e and flam e are output variables
in the environment component, i.e., their values can be affected only by this
component itself. Correspondingly, flow e and ign e are its input variables,
whose values are assumed to be controlled by the system component.

Review Questions

Question 2.1.1 What is meant by a closed-system model?

Question 2.1.2 What are the different kinds of state variables that appear
in action system models?

Question 2.1.3 What is the role of auxiliary variables in operational speci-
fications?

Question 2.1.4 How do components communicate with each other in state-
based models?

Question 2.1.5 Why are interface variables often partitioned into input vari-
ables and output variables?

Question 2.1.6 Why was variable req e in the gas-burner example called
an output variable, although it gives input to the control software?

Exercises

Exercise 2.1.1 Considering programs in high-level languages, which are the
different aspects that may lead to (potentially) infinite state spaces in them?

2.2 Executions and Actions

Operational models specify executions in which the system state is changed in
discrete steps. In this section we discuss the modeling of such steps in action
systems.
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2.2.1 Executions

An execution in an action system consists of steps in which the state of the
total system is modified.1 Figure 2.2 illustrates an execution that generates the
state sequence 〈s0, s1, s2, . . . 〉. Each step in an execution corresponds to the
execution of some action. The execution in Fig. 2.2 is generated by executing
the sequence 〈A1, A2, . . . 〉 of actions.
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Fig. 2.2. Execution in an action system

Depending on the state of the total system, each action is either enabled
in that state or not. An action can be executed only when it is enabled. In
Fig. 2.2, action A1, for instance, is enabled in state s0.

The first state in an execution (s0) is called its initial state. An initial state
has to belong to a set that has been specified as the set of permissible initial
states.

An execution may be terminating, in which case it has a final state. If an
execution is non-terminating, the associated state sequence 〈s0, s1, s2, . . . 〉 is
infinite.

A state in the state space is said to be reachable if it appears in some
possible execution that starts from a permissible initial state.

In the gas-burner example it is natural to assume that all four variables
have value false in the initial state, and that executions are non-terminating.

2.2.2 Actions

Actions are the basic units of execution in action systems. Each action is
local to a specified component, i.e., an action of this component. In addition
to local variables of the component, an action can also access and modify
interface variables in other components.

When executed, an action is said to be executed by the component to
which it is local.2 In particular, actions of the system part are called system
actions, and those of the environment part are called environment actions.
Obviously, an implementation of the system part needs to implement only

1Notice the overloading of the word ‘system’, used both for the ‘system part’,
i.e., the ‘system’ to be implemented, and for the ‘total system’ that consists of a
‘system part’ and an ‘environment part’.

2This deviates from the principle followed in CSP and other process algebraic
approaches, where the responsibility for executing an action is shared by a process
and its environment.
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system actions; environment actions are ones that are assumed to be executed
by the environment, when it cooperates with the system part.

The total effects of execution in a closed system are independent of how the
actions are assigned to the components. Therefore, we keep this assignment as
an extralinguistic issue for which no special facilities will be provided in the
action language. However, since this assignment is important for implementing
a component, we will return to the associated question of partitioning (of both
variables and actions) into components in Chap. 8.

2.2.3 Nondeterminism

As illustrated in Fig. 2.3, there may be several alternatives – nondeterministic
choices – for the next step in an execution. In this figure there is a choice
between actions A and B, both of which are enabled in state s.

�

A

B

Fig. 2.3. Illustration of nondeterministic alternatives

Taking nondeterminism as an inherent characteristic of the execution
model is a clear departure from deterministic control, which is a natural as-
sumption in sequential algorithms. In operational specifications, especially in
the modeling of reactive systems, nondeterminism is a necessity. The reasons
for this are the following:

• Environment behavior cannot be modeled deterministically, in general.
Therefore, there may be several alternatives for an environment action to
be executed next.

• Without the synchrony hypothesis (see Sect. 1.2.5, p. 13), there are situa-
tions where the next action to be executed can be either a system action
or an environment action.

• Alternative choices for a system action to be executed next are needed in
the modeling of concurrent and distributed systems.

• In operational specifications it is important to be able to leave more free-
dom for the action to be executed next than what will be utilized in im-
plementations.

Basically, nondeterminism reflects lack of information.3 Instead of deter-
ministic modeling, the best we can then do is to give approximations that are

3It is a philosophical question that is irrelevant for this book whether there exists
nondeterminism in the real world, or only in our incomplete models of it.
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‘safe’ for reasoning. This is essential especially in the modeling of the envi-
ronment, which we wish to treat similarly to the system part in closed-system
modeling of reactive systems.

As for system actions, concurrency is an important source for lack of in-
formation. Due to unknown relative speeds and communication delays, or to
the freedom left for schedulers, the exact order of events in concurrent pro-
cesses is unpredictable, and a specification should therefore be prepared for
the different possibilities by nondeterminism.

A different reason for lack of information is that this lack is a deliberate
choice of the specifier, who wants to avoid overspecification, i.e., unnecessary
constraints for implementations.

2.2.4 Absence of Probabilities

When nondeterminism is used in quantum physics, for instance, probabilities
are assigned to the different alternatives that can take place. This is natural
when nondeterministic models are associated with physical systems that can
be observed.

In contrast, our specifications are for describing required properties of all
individual executions in a reactive system. Therefore, the nondeterminism that
is used here is ‘pure’ nondeterminism without probabilities. In other words,
we are interested only in the possibility of executing different actions, not in
their stochastic properties or execution frequencies.

Lack of information then means that nothing is known (or specified) about
the process by which nondeterministic alternatives are selected. In other
words, an implementor (or the environment) has complete freedom to use
any policy – systematic or random – in this selection.

This simplifies our models essentially, but it also restricts the kinds of
properties that can be modeled and talked about. In particular, it is then
not possible to rely on the idea that zero probability would exclude some
(infinite) executions. Also, it is not possible to specify stochastic properties of
executions.

2.2.5 Atomicity of Actions

Actions are assumed to be atomic units of execution. The meaning of this is
that, once the execution of an action has started, it will eventually be com-
pleted without interruption or interference from any other actions. Obviously,
atomicity is essential for modeling executions as sequences of state transitions
of the kind illustrated in Fig. 2.2 (p. 30), where each step is associated with
some action. In Chap. 9 we will take a closer look at why the idea of atomic
state changes is applicable in the modeling of both sequential and concurrent
computations.

The significance of atomicity is illustrated in Fig. 2.4, where action A of the
upper part is divided in the lower part into two consecutive actions A1 and A2
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Fig. 2.4. Illustration of the significance of atomicity

with the same combined effect. The emerging intermediate state s ′ now has
the consequence that some other actions than A2 may also be possible in this
state. As a result, some executions may become possible that were excluded
by the atomicity of A. Obviously, phenomena of this kind cannot appear in
sequential programming, but in concurrent and distributed systems they are a
dangerous source for time-dependent errors, since the programmer’s intuitive
idea of atomicity may easily differ from the one actually implemented. Such
errors may also be impossible to find by systematic testing.

The notion of atomicity is fundamental for operational specification of
concurrent and distributed systems, and therefore also for reactive systems.4

It can, however, be seen as a specification-level concept that cannot be di-
rectly utilized (at least in current) programming languages for concurrent
and distributed computing. Instead, various mechanisms for communication
and synchronization between concurrent processes are available in them, in
terms of which the desired atomicity can be built into systems.

Unfortunately, the significance of atomicity as a basic notion is not yet
commonly understood in the literature on design methods. Instead, concur-
rency is usually discussed in the light of mechanisms to control it in sequential
execution threads, rather than in terms of the intended degree of atomicity.

Notice that the execution of an atomic action may take time, i.e., atomicity
is not synonymous to instantaneity. The discussion of time-related aspects will
be postponed to Chaps. 9 and 10.

2.2.6 Interleaving

Atomicity, as defined above, does not exclude concurrent execution of several
actions in an implementation, provided that their combined effect is as if they
were executed in some sequential order. In an interleaved model of executions
(see Fig. 2.2, p. 30) actions can then be thought of to be executed in such

4Notice that even in the presence of a single thread of execution in software, a
reactive system is always a concurrent system in the sense that the environment
‘executes’ concurrently with the system part. At the machine-language level this
concurrency is reflected in the use of an interrupt mechanism, or in systematic
polling of interface variables.
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an order. It is the responsibility of an implementor to ensure the validity of
the non-interference assumption of actions that can be executed concurrently
in different threads of control, by using the concurrency mechanisms that are
available in the programming language. These problems will be discussed in
more detail in Chap. 9.

In particular, reactive systems have potential concurrency in what happens
in the environment and what happens in the system part. As an example,
consider the situation that the heat request in the gas burner is turned off
while the control system is executing some action. Because of the atomicity
assumption this has no affect on the action that the control system is currently
executing, and the total effect is as if the heat request had gone off immediately
after this action.

Obviously, the atomicity assumption of actions is what makes it possible
to use an interleaved execution model, and thereby to avoid the complications
that would follow from explicit modeling of concurrency. This is essential
in making the execution model as simple as possible without affecting its
applicability to distributed and concurrent systems.

In particular, an interleaved execution model makes it possible to utilize
the notion of a global state, which consists of the current values of all variables.
In distributed systems, where several actions may be executed concurrently
in different parts of the system, there need not exist any moments (except the
initial state) where all variables would have well-defined values. Therefore, the
global state is a theoretical notion that need not exist in reality. In Chap. 9
we will also discuss this question in more detail.

2.2.7 Absence of Processes

Concurrency is usually described in terms of concurrent processes or execution
threads. This reflects a desire not to change the conceptual basis that has been
successful for sequential programming, but to develop add-ons to it, in order to
cope with the additional problems. It is, however, unreasonable to expect that
a well-developed but inherently sequential basis could be extended to cover
concurrency in a conceptually elegant manner. After all, sequential execution
is a reduced special case of concurrency, and extending a specific solution to a
more general situation easily burdens the more general case with unnecessary
complications.

The action-oriented execution model is not an extension of an inherently
sequential model of computing. In particular, there are no built-in control
threads or implicit program counters. Instead, any action that is enabled in
the current state can be executed next, and competition between different
actions is always resolved by a nondeterministic choice. If sequential threads
are required, these can always be imposed by using explicit program-counter
variables and utilizing them in the enabling conditions of actions. Questions
related to concurrent processes will be discussed in more detail in Chap. 9.
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Comparing the roles of actions and processes, an action describes what
is done, while processes are for describing who does it, or how the respon-
sibilities are divided between different execution agents. Obviously, ‘what’
questions are essential in specification, while ‘who’ and ‘how’ questions can
be postponed to later stages of design. This provides further justification for
abandoning process-oriented execution models in operational specifications.
In closed-system modeling of reactive systems one cannot, however, ignore
the question of assigning the responsibility for each action to some compo-
nent in the total closed system. This question will be discussed in more detail
in Chap. 8.

2.2.8 Actions as Syntactic Entities

In conventional programming languages for concurrent and distributed sys-
tems, atomic actions emerge as ‘dynamic’ run-time entities, which have no
explicit representation in program text. For instance, when a programming
language provides a mechanism for synchronous communication between two
processes, no corresponding syntactic entities are provided: such events just
take place whenever the communicating processes execute matching send and
receive statements in their own codes.

This situation can be compared to how subroutines, loops, and other se-
quential programming structures were dealt with in early programming lan-
guages, where even these notions had no clearly defined syntactic representa-
tions. Since atomic actions are a fundamental concept for an execution model
for concurrent and reactive systems, they are taken as explicit syntactic enti-
ties in our action language.

An action consists of an enabling guard and a body. The guard is a Boolean
expression that determines whether or not the action is enabled for execution
in the current state, and the body is a multiple-assignment statement to be
executed when the action is executed. Syntactically an action A will be written
in the form

A : g→ x ′
1 = e1

∧ x ′
2 = e2

· · ·
∧ x ′

k = ek ,

where g is the guard, and x ′
i = ei, i = 1, . . . , k, denote the individual assign-

ments in the body. Each assignment is written as an equation between the
new (primed) value of a variable xi and an expression ei, which is given in
terms of the old (unprimed) values of variables. Also, conditional assignments
of the form

if p then x ′ = e
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will be used, which is equivalent to

x ′ = if p then e else x .

2.2.9 Example: Gas-burner Actions

As an example we discuss actions for the gas-burner problem introduced
above.

Environment Actions

What the environment can do is to turn the two sensors on and off.
For the temperature sensor this leads to two simple actions, which we call

Req on e and Req off e. The former can be executed when req e is false, and
it turns it into true. Correspondingly, the latter can be executed when req e

is true, and it turns it into false. In the action language we give these in the
following form:

Req on e : ¬req e→ req e ′ = true ,

Req off e : req e→ req e ′ = false .

For the flame sensor the situation is analogous and leads to the following
actions:

Flame on e : ¬flam e→ flam e ′ = true ,

Flame off e : flam e→ flam e ′ = false .

In the absence of a model of how the temperature develops, it is natural
to assume that the heat request can go on and off arbitrarily, as modeled
here. For the flame sensor one might suggest, instead, that it would not be
possible to sense a flame unless the gas valve has been opened and the ignition
transformer is on. Discussing the feasibility of including these conditions in
the model is left to the reader (Exercise 2.2.4).

Input from Sensors

Since the interface variables that model the state of the two sensors belong to
the environment, system actions are needed for transmitting this information
to the control software. This leads to the following system actions:5

5The meaning of prefix SF on action names will be explained below in Sect. 2.3.3.
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SFReq on s : req e ∧ ¬req s→ req s ′ = true ,

SFReq off s : ¬req e ∧ req s→ req s ′ = false ,

SFFlame on s : flam e ∧ ¬flam s→ flam s ′ = true ,

SFFlame off s : ¬flam e ∧ flam s→ flam s ′ = false .

In other words, whenever the values of the corresponding variables in the two
components disagree, those in the system component can be updated. It is
left unspecified how the communication for noticing these situations should
take place. Some alternatives are that the control software would periodically
poll the states of the sensors, or that each change in these would transmit an
interrupt signal that invokes a suitable code in the control software.

Phases of Control

To describe how the system should react to environment stimuli, we observe
that a normal operation cycle consists of phases that can be described as
follows (see the state diagram in Fig. 2.5, where the asterisk indicates the
initial state):

• Initially, and between consecutive heating cycles, the state of the control
component can be characterized by state predicate Idle,6

Idle
∆
= ¬flow s ∧ ¬ign s ,

expressing that the gas valve is closed and the ignition transformer is off.
We say that the state then is Idle.

• As a response to a heat request, state Starting is entered,

Starting
∆
= flow s ∧ ign s ,

in which the gas valve has been opened and the ignition transformer has
been turned on. The action that causes this will be called Start s.

• If the flame sensor then indicates a flame, state Ignited is entered (action
Ign off s),

Ignited
∆
= flow s ∧ ¬ign s ,

in which the gas valve is still kept open, but the ignition transformer has
been turned off. Otherwise state Idle is re-entered (action Stop s).
6The symbol ‘ ∆� ’ is used to stand for ‘is defined as’, or ‘is defined to be equivalent

to’.
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Fig. 2.5. Phases of a gas burner

• As a response to the heat request or the flame sensor going off in state
Ignited, state Idle is re-entered (action Close s).

This leads to the following formulation of system actions for controling the
burner:

SFStart s : Idle ∧ req s ∧ ¬flam s→ flow s ′ = true

∧ flow e ′ = true

∧ ign s ′ = true

∧ ign e ′ = true ,

SFIgn off s : Starting ∧ flam s→ ign s ′ = false

∧ ign e ′ = false ,

SFStop s : Starting ∧ ¬flam s→ flow s ′ = false

∧ flow e ′ = false

∧ ign s ′ = false

∧ ign e ′ = false ,

SFClose s : Ignited ∧ (¬req s ∨ ¬flam s)→ flow s ′ = false

∧ flow e ′ = false .

As for other details, these actions are relatively straightforward, but the
conjunct ¬flam s may at first sight seem superfluous in the guard of Start s.
It disallows, however, restarting the burner when some fault prevents the flame
sensor from going off. This is an example of properties that a specification for-
malism should allow us to discuss and analyze properly, before implementation
strategies are considered.
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It should be noticed that predicates Idle, Starting, and Ignited are just
a shorthand for three value combinations for the Boolean variables flow s

and ign s, which are controlled by the above system actions. The fourth
possible value combination, ¬flow s ∧ ign s, is obviously undesirable, and is
unreachable from the initial state by these actions.

Review Questions

Question 2.2.1 Why is nondeterminism essential in operational models of
reactive systems?

Question 2.2.2 What is meant by pure nondeterminism, and why is it useful
in specifications?

Question 2.2.3 What is meant by atomicity of actions, and why is it a
fundamental notion in the specification of distributed and concurrent systems?
Why is atomicity not usually discussed as a basic notion in connection with
programming languages?

Question 2.2.4 What is meant by time-dependent errors, and how do they
relate to atomicity?

Question 2.2.5 Why is it possible to use an interleaving model for reasoning,
even though actions can be executed concurrently in reality?

Question 2.2.6 Why is it so that global states need not exist in the reality
of distributed systems?

Question 2.2.7 Why are concurrent processes not fundamental concepts in
the specification of reactive systems?

Exercises

Exercise 2.2.1 Discuss the difference between the impossibility of a non-
terminating execution and its zero probability in the light of repeated coin
tossing, or repeated collisions in Ethernet-like protocols.

Exercise 2.2.2 Which of the 256 possible states in the gas-burner example
are not reachable from the initial state? Which state transitions would be
possible for a state where flow s = false and ign s = true?

Exercise 2.2.3 Variables flow s and flow e have the same value in all
reachable states, and the same holds for ign s and ign e. Why are they all
included in the model?
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Exercise 2.2.4 Consider adding the assumption to the gas-burner model
that a flame cannot be sensed unless the gas valve is open and the ignition
transformer is on. How would this affect environment actions and the states
that are reachable? Discuss whether this would be a reasonable assumption
to make.

2.3 Fairness as an Execution Force

Since a sequential program has exactly one control thread, there is no need for
an explicit notion of an execution force that would ensure and control progress
in executions. With nondeterminism the situation is different in models of con-
current and distributed systems. A suitable notion for this purpose is fairness,
which will be introduced in this section.

2.3.1 Need to Control Nondeterminism

In execution models for sequential programs, execution always proceeds to
the next statement, as long as there exists one.

With concurrency the situation is more complex, since the next statement
(or action) is no longer uniquely defined because of nondeterminism. Unre-
stricted nondeterminism is obviously insufficient as such, since some control
may be needed to disallow systematic bypassing of some enabled actions. For
instance, one of environment actions Req on e and Req off e is always en-
abled in the gas-burner example, but executing only those would not generate
the kinds of executions we want. The problem would not be solved by re-
quiring that system actions – or actions of each component – must also be
executed, since similar competition may also appear between different actions
of the same component.

For concurrent processes a practical solution is to use a scheduler to control
their execution. For an action language a similar solution would be to assign
priorities to system actions, and to postulate a scheduler that would utilize
these priorities to dispatch system actions into execution in a deterministic
fashion. This would, however, be an implementation-oriented solution that
would remove nondeterminism from system actions, which is not desirable, as
was discussed in Sect. 2.2.3 (p. 31). What is needed instead is an abstraction
that captures the essential properties of schedulers, but without enforcing
determinism.

The solution should also be such that it applies in a similar fashion to all
kinds of components in a closed system. For instance, considering the modeling
of environment behavior, it is quite reasonable that the environment may
remain continually silent in spite of enabled environment actions. Therefore,
in addition to selecting an action nondeterministically for execution, it should



2.3 Fairness as an Execution Force 41

also be possible that none of the enabled actions is selected, which would
terminate the execution.7

2.3.2 Fairness

An appropriate abstraction of schedulers and an execution force is provided by
the notion of fairness. Informally, fairness with respect to an action guarantees
fair treatment of this action in the sense that, when enabled, this action cannot
be systematically bypassed in legal executions.

Two varieties of fairness are distinguished, strong fairness and weak fair-
ness. The former allows us to express that a repeatedly enabled action cannot
be systematically bypassed. Weak fairness is a weaker force that enforces the
execution of continually enabled actions only.

To be more precise, an execution is strongly fair with respect to an action
A if it is not the case that A is enabled infinitely often (or, in the final state,
if the execution terminates), but is not executed from some point on.

Correspondingly, an execution is weakly fair with respect to action A if it
is not the case that, from some point on (or, in the final state, if the execution
terminates), A is continually enabled but not executed.

Since ‘continually’ implies ‘infinitely often’, strong fairness is properly
stronger than weak fairness.

2.3.3 Fairness in the Action Language

The first question in including the notion of fairness in the action language is
whether some uniform fairness assumption – like weak fairness with respect to
each individual action – would be sufficient for our purposes. This is not the
case, since different actions may need to be treated differently. For instance,
we would not like to exclude the possibility that some environment stimuli are
not at all given in some executions, even though the corresponding actions
are enabled, but the system component should never stop responding to those
stimuli that have been given to it. Therefore, we choose to express fairness
assumptions explicitly and individually for each action.

The next question is whether both kinds of fairness assumptions should
be supported. On one hand, it can be argued that all direct possibilities to
enforce fairness properties in an implementation are restricted to weak fair-
ness. On the other hand, there is no reason to require specifications to be
directly implementable, and strong fairness assumptions are more stable in
some transformations of action systems, which makes them more appealing
for specifications (see Exercise 2.3.1, for instance). Therefore, we decide to
accept the slight notational complexity of allowing them both.

7It would, of course, be possible to add an explicit action that terminates the
execution by entering a state in which no actions are enabled, but this would only
increase the complexity of modeling.
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The convention that will be adopted here is to prefix the names of actions
by SF or WF to indicate strong or weak fairness assumptions with respect to
them. Actions for which such fairness assumptions are given will be called
(strongly or weakly) fair. In the gas-burner example, each system action was
marked as strongly fair.

Legal executions in an action system are now assumed to satisfy also the
fairness requirements specified for its actions. To emphasize this, such exe-
cutions are also called fair executions. In contrast, executions that are not
acceptable because they do not satisfy the given fairness requirements are
called unfair.

It should be pointed out that giving fairness assumptions only with respect
to those actions that have been given in the action system constrains what
can be conveniently expressed in the action language. For instance, no fairness
marking on the actions given in the gas-burner example could express the
environment property that action Req off e will eventually be executed, if
it stays continually enabled with flam e = true. Therefore, requiring this
property would require changes in environment actions (see Exercise 2.3.4).
This restriction allows us, however, to keep the execution model of action
systems relatively simple also with respect to fairness properties.

2.3.4 The Effect of Fairness

Fairness assumptions express how the execution force is controlled. In their
absence there would be no need for an execution to take any steps at all.
That is, an execution could terminate in the initial state, or in any other
state afterwards. With fair actions, on the other hand, an execution cannot
terminate in a state in which one of these is enabled. That is, fairness then
enforces the execution of some action (which need not be a fair action).

In nonterminating executions fairness forbids only infinitely often repeated
(or continual) bypassing of fair actions. In other words, fairness can only
guarantee eventual execution of a fair action, but it states nothing about
how soon this will take place. The effect of fairness therefore becomes visible
only ‘in the infinity’, which means that any finite sequence of steps, starting
from an admissible initial state and proceeding by enabled actions, can be
completed into a fair execution.

Since ‘eventually’ is obviously insufficient for specifying deadlines for ac-
tion execution, fairness has sometimes been considered a purely theoretical
notion that is useless for practical purposes. Another view has been that it
is useful when only temporal ordering of events is of concern, but has to be
replaced by something else when quantitative time is introduced. In Chap. 10
we will see how fairness can also be used as the execution force when real-time
properties of executions are significant.
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2.3.5 Example: Gas Burner

The strong fairness assumptions given in the actions of the gas-burner example
require that no system action can be continually or repeatedly enabled without
eventual execution. This has some important consequences for the executions
that are allowed.

Obviously, no fairness assumptions could guarantee that each individual
change in the states of the two sensors would be observed by the control
system, if these states are very unstable. This is related to the symmetry of
the modeling formalism with respect to components in the model. In contrast
to the synchrony hypothesis, this symmetry would also allow the environment
to be fast in comparison to the control system. Strong fairness ensures in this
example, however, that continual instability of environment variables req e

and flam e will be observed by the control system.
Without Start s being a fair action, its execution would not be enforced

even if its guard would continually stay true. This would allow executions
where the system does not react to any stimuli. Although Start s can be
executed only when req s indicates a heat request, strong fairness guarantees
that it is not possible for req s always to be turned off before the system has
reacted to the request. (Whether this is a desirable property in a specification,
or how to implement it, will not be discussed here.)

Similarly, if flam s goes repeatedly on and off in state Starting, strong
fairness eventually forces either Ign off s or Stop s into execution. This dis-
allows indefinite gas leakage while the ignition transformer is on.

No fairness requirements were given for environment actions. With such
requirements one could model, for instance, the property that the heat request
will eventually go off, if the flame is burning sufficiently long. This would,
however, need slight changes in environment actions (see Exercise 2.3.4).

2.3.6 Fundamental Liveness

As already mentioned, the possibilities of expressing fairness assumptions are
not as general in the action language as they could be. The basic restriction
is that fairness requirements can only be associated with those actions that
are given as syntactic entities. A slight generalization would be to consider
fairness also with respect to collections of such actions. A set of actions would
then be considered to be enabled when at least one action in the set is enabled,
and it would be considered to be executed when any of them is executed.

Using this generalization, fundamental liveness (FL) in a reactive system is
defined as weak fairness with respect to the set of all system actions. Informally
this can be understood as follows: if the system can continually do something,
it will eventually do something.

In conventional programming languages fundamental liveness is an implicit
assumption. If there are no sources for nondeterminism (like concurrency), this
is a natural basic assumption. At most one action is then enabled at any time,
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which means that fundamental liveness is in this situation equivalent to (both
weak and strong) fairness with respect to each individual system action.

2.3.7 Example: Fair Scheduling of Processes

As an example, consider the scheduling of n independent, non-terminating,
concurrent processes that run on a single processor. In modeling this situation
we can assume for each process a single action Ai, which is always enabled:

• Action Ai, 1 ≤ i ≤ n, models the event that process i executes for a finite
time slice allocated to it.

If all actions Ai are assumed to be (at least weakly) fair, then we have a
model of fair scheduling in the sense that each process will always eventually
get its next chance to proceed, and no execution with this property is made
impossible. In other words, the crucial property of reasonable scheduling al-
gorithms can be specified using fairness, without going into details of how to
implement it.

This shows that fair scheduling – or fairness, in general – is an abstraction
that is not intended to be implemented as such, i.e., in a manner that would
allow only fair executions, but would not exclude any one of them. Instead,
one usually needs to implement some deterministic policy that implies fairness
but also excludes some fair executions.

For instance, a simple round-robin policy could be used for scheduling of
independent processes in practice. In more sophisticated scheduling algorithms
the processes could have different priorities for execution, but fairness would
then require that high-priority processes still cannot permanently block the
execution of low-priority processes (see Exercises 2.3.6 and 2.3.7).

2.3.8 Theoretical Power of Fairness

Since algorithms are deterministic by definition, nondeterminism is algorith-
mically unimplementable. For implementing a nondeterministic choice – for
instance a nondeterministic assignment of either 0 or 1 to a variable – one
can, however, use such interactions with other concurrent processes or the
environment in which the outcome is unpredictable. An example of this is
to use the last bit of the clock reading. This shows that interaction provides
possibilities that exceed those of algorithms.

Nondeterministic choice between an infinite number of alternatives is
called unbounded nondeterminism. This is unimplementable not only algo-
rithmically but also using nondeterministic choice between a finite number of
alternatives (see Exercise 2.3.10).

Unbounded nondeterminism could, however, be implemented if fairness
were available as such, i.e., if action systems could be implemented so that
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no fair executions would be excluded (see Exercise 2.3.12). Conversely, if un-
bounded nondeterminism is available, then it is possible to construct a theo-
retical fairness scheduler for an arbitrary action system, so that none of the
fair executions are excluded (see Exercise 2.3.15). Fairness and unbounded
nondeterminism therefore have the same theoretical power.

2.3.9 Probabilistic Implementation

If probabilities can be assigned to the alternatives in selecting between a
finite number of alternatives, then probabilistic implementation of unbounded
nondeterminism is possible, where any one of the alternatives has a non-zero
probability, and the selection is completed in finite time with probability 1

(see Exercise 2.3.11). Comparing to ‘pure’ nondeterminism, this still leaves
the possibility that the selection is never completed, but the probability for
this to happen is 0.

Correspondingly, in probabilistic implementation of strong (weak) fairness
with respect to action A, action A is eventually executed with probability 1

if it is infinitely often (continually) enabled from some point on. Such an
implementation is obviously possible if probabilities can be assigned to the
alternatives in a boundedly nondeterministic choice. This would still leave
the possibility for unfair executions, but their probability would be 0.

A practical example of probabilistic implementation of fairness is the treat-
ment of collisions in Ethernet-like protocols. If several processes try to broad-
cast a message at the same time, then each of them observes the collision and
waits for a random time before retrying. Although renewed attempts may lead
to repeated collisions, the probability of eventually getting through is 1 for
each process. That is, eventual execution of a continually enabled broadcast
action will succeed with probability 1, and the probability for the (theoreti-
cally still existing) possibility for not succeeding is 0.

2.3.10 Critique and Defence of Fairness

On one hand, fairness provides a very weak way to control the execution of
concurrently enabled actions – no matter whether weak or strong fairness is
used. In particular, fairness does not provide any direct means to bound the
time (or number of times) for which a fair action can be bypassed when it is
enabled. On the other hand, fairness is a theoretically very powerful notion
that cannot be directly enforced as such.

For these reasons it should not be surprising that fairness is often consid-
ered to be totally useless for the practice of software engineering. This critique
is, however, usually based on misplaced expectations of its role. Comparing
to practical facilities, like priorities, by which process scheduling can be af-
fected, fairness is not intended to be a programming mechanism that could
be directly utilized in implementations. Instead, it is an abstraction that has
a fundamental role in an execution model for specifications.



46 2 Towards an Action Language

On a high level of abstraction it is sufficient for a specification to indicate
which actions have to be treated fairly. A model of an implementation needs,
however, a concrete solution of how this can be done. In practice this usually
requires exclusion of some executions that would not be incorrect as such, and
the associated decision can be seen as an implementation-oriented one. It is
important, however, that fairness still remains a useful notion for an execution
force also on such lower levels of abstraction.

An advantage of the notion of fairness is that it keeps the execution model
of specifications simple. Still, it provides a sufficient basis for also specifying
properties with practical characteristics. As such it allows us, for instance, to
deal effectively with stimulus–response properties at a logical level of causality,
where real time is not considered. Furthermore, such logical models can be
extended to specify also real-time properties, as will be discussed in Chap. 10.

Review Questions

Question 2.3.1 Why is there no need for the notion of fairness in determin-
istic systems?

Question 2.3.2 What is the difference between strong and weak fairness?

Question 2.3.3 What is the main restriction of the action language in ex-
pressing fairness properties?

Question 2.3.4 What is meant by fundamental liveness?

Question 2.3.5 How can fairness be enforced in practical implementations?

Question 2.3.6 Why is nondeterminism not algorithmically implementable?

Question 2.3.7 What is meant by a fairness scheduler?

Question 2.3.8 What is the difference between unbounded nondeterminism
and its probabilistic implementation?

Exercises

Exercise 2.3.1 Consider the situation illustrated in Fig. 2.4 (p. 33). If no
other action except A2 is enabled in the intermediate state s ′, is it still possible
that the splitting of action A has some effect on the legal executions that
can be generated by the action system? Notice that there may be fairness
assumptions on the actions of the system.

Exercise 2.3.2 If only weak fairness would be required with respect to each
system action in the gas-burner example, what effect would this have on exe-
cutions? Analyze this separately for each system action.
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Exercise 2.3.3 How would the executions in the gas-burner example be af-
fected if only fundamental liveness would be required? Would the executions
be the same as in the situation of Exercise 2.3.2?

Exercise 2.3.4 Modify the environment model in the gas-burner example so
that req e will eventually turn false, if the flame is continually burning.

Exercise 2.3.5 Does fundamental liveness imply weak fairness with respect
to each system action, or conversely?

Exercise 2.3.6 Consider the situation with several independent, concurrent
and non-terminating processes on two levels of priority. Assume also additional
actions by which these processes can be nondeterministically disabled and
enabled. Give an action-system model in which fair scheduling is violated
only by always giving preference to higher-priority processes.

Exercise 2.3.7 Modify the model constructed in Exercise 2.3.6 so that ev-
ery continually enabled process will eventually proceed, even though higher-
priority processes may get their chances more often.

Exercise 2.3.8 The use of shared resources can be controlled by semaphores.
Let the following actions be used in the modeling of a semaphore:

• Action Ai, 1 ≤ i ≤ n: process i executes code where the shared resource is
not used.

• Action Bi, 1 ≤ i ≤ n: process i requests permission to enter its critical
region, in which it is allowed to use the shared resource.

• Action Pi, 1 ≤ i ≤ n: process i enters its critical region (P operation on
the semaphore).

• Action Ci, 1 ≤ i ≤ n: process i executes code within its critical region.
• Action Vi, 1 ≤ i ≤ n: process i exits its critical region (V operation on the

semaphore).

Add suitable variables to these actions, to model their intended sequencing,
as well as the associated P and V operations on the semaphore.

Exercise 2.3.9 A fair semaphore is a semaphore that eventually gives every
requesting process a permission to use the resource. Add fairness requirements
to the actions of Exercise 2.3.8 to model the use of a fair semaphore.

Exercise 2.3.10 König’s Lemma states that a finitely branching tree with
an infinite number of leaf nodes necessarily contains infinitely long paths.
Use this to show that a nondeterministic choice between a finite number of
alternatives is insufficient for implementing unbounded nondeterminism.
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Exercise 2.3.11 Assume that a probabilistic assignment of either 0 or 1

is available, where the probability for each alternative is 0.5. Show how to
implement nondeterministic assignment of an arbitrary natural number to a
variable, so that the probability for completing this in finite time is 1.

Exercise 2.3.12 Give actions that use fairness to implement a nondeter-
ministic assignment of an arbitrary natural number to a variable in a finite
number of action executions.

Exercise 2.3.13 Assume that nondeterministic assignment is available for
assigning an arbitrary natural number to a variable. Outline a theoretical
construction of a fair scheduler for n independent non-terminating processes
(as discussed in Sect. 2.3.7, p. 44), so that no fair executions are excluded.
Hint: in a fair schedule, each execution of a process is followed by some finite
number of scheduling decisions in which other processes are selected.

Exercise 2.3.14 Modify the construction outlined in Exercise 2.3.13 to the
situation where the scheduling concerns n actions A1, . . . , An that may also
affect each other’s guards. The scheduler is assumed to be able to evaluate
the guards of all of them, and strong fairness is required with respect to each.

Exercise 2.3.15 Generalize the construction outlined in Exercise 2.3.14 to
cover the possibility that actions may also have weak fairness requirements or
no fairness requirements at all.

2.4 Implementation of Action Systems

Operational specifications in the action language can be used as models for
implementation. In this section we discuss this in the light of the gas-burner
example.

2.4.1 Operational Specifications vs. Programs

In principle, the action language could be developed into a programming lan-
guage. This is not, however, the goal in this book. Instead we are interested
in

• giving operational specifications at a high level of abstraction, where hu-
man assistance may be needed in their execution (or simulation and ani-
mation), and in

• refining operational specifications into a form that reflects the possibilities
that are available in actual implementations.

For these reasons, the action language, as developed in this book, deviates
from programming languages in the following respects:
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• Action systems provide closed-system models that also describe the be-
havior of the environment.

• Interaction between the environment and the system can be modeled at
a level of abstraction which differs from the direct physical possibilities of
implementations.

• The types of state variables are mathematical abstractions, like integers
of arbitrary size.

• The language is open for additional mathematical concepts.
• Actions may contain expressions that cannot be evaluated mechanically,

or whose efficient evaluation is not directly possible.
• No attention is paid to the possibility of efficient schedulability of actions.
• Operational specifications in the action language cannot be directly trans-

formed into implementations that satisfy the real-time properties specified.

2.4.2 Example: Gas Burner

Being operational, the above gas-burner specification can be used as a model
for an implementation. Still, an implementor has to decide how the interac-
tion between the system and environment parts is implemented, and human
assistance may also be needed in translating the given system actions into
executable code in a conventional programming language.

In the following we use the specification as a basis for an implementation in
Ada 83, which is a language that has high-level facilities for writing embedded
software. No prior familiarity with Ada is expected of the reader.
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Fig. 2.6. Illustration of a gas-burner implementation

General Structure

The structure of the implementation is shown in Fig. 2.6. The states of the
two actuators are controlled by the main program (procedure CONTROL,
given in Table 2.3 on p. 53). This program, which will be discussed below in
more detail, is a nonterminating loop with statement labels that correspond to
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the three control states Idle, Starting, and Ignited. The program counter of
CONTROL will then always show the control state and, hence, the currently
assumed states of the two actuators. Therefore, variables flow s and ign s

need no explicit representation as program variables.
All code that corresponds to the bodies of system actions is contained in

process8 ACTIONS, which will be discussed below. Actions that control the
actuators require cooperation between CONTROL and ACTIONS, whereas
actions for registering the sensor states are executed in cooperation between
ACTIONS and INTERFACE. Variables req s and flam s, whose values in-
dicate the most recent sensor readings, are local to process ACTIONS.

INTERFACE is a module which observes (or is notified of) changes in
sensor states, and communicates these changes to process ACTIONS. It
also contains subroutines for operating the two actuators. This module is
implementation-dependent and will therefore not be discussed here in more
detail.

Actions

In Ada, process communication takes place through ‘entries’, which are de-
clared in separate specification modules for processes. An entry of a process
can be called from other processes as if it were a subroutine, and such a call
can be accepted with an accept statement.

For process ACTIONS we declare entries that correspond to the different
system actions (see Table 2.1). Actions Ign off s and Stop s have been com-
bined here, since the decision between their execution is based on the value
of variable flam s, which is local to process ACTIONS.

Table 2.1. Entries in process ACTIONS

task ACTIONS is
entry Req on s; – – called from INTERFACE
entry Req off s; – – called from INTERFACE
entry Flame on s; – – called from INTERFACE
entry Flame off s; – – called from INTERFACE
entry Start s; – – called from CONTROL
entry Ign off or Stop s(b: out BOOLEAN);

– – called from CONTROL
entry Close s; – – called from CONTROL

end;

Corresponding to the simple execution model of action systems, the code
of process ACTIONS consists of a nonterminating loop, in which one system

8In Ada terminology, processes are called ‘tasks’.



2.4 Implementation of Action Systems 51

Table 2.2. Process ACTIONS

with INTERFACE; use INTERFACE;
task body ACTIONS is

req s, flam s: BOOLEAN;
begin

loop
select

accept Req on s do – – action Req on s

req s := TRUE;
end;

or accept Req off s do – – action Req off s

req s := FALSE;
end;

or accept Flame on s do – – action Flame on s

flam s := TRUE;
end;

or accept Flame off s do – – action Flame off s

flam s := FALSE;
end;

or when req s and not flam s
�

accept Start s do – – action Start s

turn gas valve on; – – subroutine in INTERFACE
turn ignition on; – – subroutine in INTERFACE

end;
or accept Ign off or Stop s(b: out BOOLEAN) do

– – action Ign off s or Stop s, depending on flam s
if not flam s then

turn gas valve off; – – subroutine in INTERFACE
end if;
turn ignition off; – – subroutine in INTERFACE
b := flam s; – – indication of choice

end;
or when not req s or not flam s

�

accept Close s do – – action Close s

turn gas valve off; – – subroutine in INTERFACE
end;

end select;
end loop;

end;
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action is executed in each cycle (see Table 2.2). The select statement in the
loop therefore has seven alternative accept statements, one alternative for
each entry, and one of these is selected in each cycle.

A necessary condition for one of the alternative accept statements to be
selected is that the entry in question has been called (either from CONTROL
or from INTERFACE), and that the Boolean guard expression (if any) in front
of the accept statement is true. These conditions represent, in fact, exactly
the guards of the corresponding actions.

Once an alternative is accepted, the associated statements are executed.
The caller waits at the entry call until the accept statement is finished, and
after that both processes are free to continue their execution. The atomicity
assumption of system actions is obviously satisfied, since the control thread of
process ACTIONS is involved in each of them. Therefore, there is no possibility
for the bodies of two actions to interfere with each other. For instance, the
two uses of variable flam s in the accept statement for entry Ign off or Stop s
necessarily give the same value.

If none of the alternatives can be accepted, then the execution of process
ACTIONS waits at the select statement until this becomes possible. If several
alternatives could be accepted, then the choice between them is arbitrary,
corresponding to nondeterministic selection of an enabled action.

As mentioned above, actions Ign off s and Stop s have been combined
here into one accept statement, where the current value of flam s determines
the action to be chosen. An indication of the selection is also given to the
caller in a Boolean return parameter b.

The Main Program

As already mentioned, the main program (CONTROL; see Table 2.3) is a
loop that corresponds to the cycle in Fig. 2.5 (p. 38). Except for the delay
statements, which have no counterparts in the specification, the primitive
statements in it are entry calls to process ACTIONS.

When at label 〈〈Idle〉〉, the main program issues an entry call that corre-
sponds to an attempt to initiate action Start s. As long as this entry call
cannot be accepted by process ACTIONS, the main program waits at this
point. Once the code for action Start s has been executed in the correspond-
ing accept statement in process ACTIONS, the main program continues ex-
ecution, but waits then in a delay statement for 10 seconds, in order to give
the flame in the burner some time to stabilize.

After that, at label 〈〈Starting〉〉, another entry call is issued, correspond-
ing to an attempt to execute either Ign off s or Stop s. Once this entry
call has been accepted and the associated code has been executed in process
ACTIONS, the return parameter in variable ‘success’ indicates which of the
two actions was executed. If it was action Ign off s, an entry call is issued
for Close s, but this can be accepted by process ACTIONS only after the as-
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Table 2.3. The main program

with ACTIONS; use ACTIONS;
procedure CONTROL is

success: BOOLEAN; – – auxiliary variable
begin

loop
〈〈Idle〉〉 – – statement label for state

� � � �

Start s; – – entry call for action Start s

delay 10; – – give the flame 10 seconds to stabilize
〈〈Starting〉〉 – – statement label for state � � � � � � � �

Ign off or Stop s(success);
– – action Ign off s or Stop s

– – as indicated in return parameter
if success then
〈〈Ignited〉〉 – – statement label for state

� � � � � � �

Close s; – – action Close s

end if;
delay 60; – – wait one minute before next cycle

end loop;
end;

sociated guard has become true. In each case, execution of the main program
can go back to label 〈〈Idle〉〉 only after a one-minute delay.

2.4.3 Validation: Satisfaction of Specification

Ultimately, a program running on a computer is not a formal mathematical
object – not to speak of closed systems with different kinds of components.
Therefore, conformance to a formal specification always depends on some
assumptions that are beyond the reach of mathematics. Even when imple-
mentation code has been derived from the specification by a formal process,
its correctness depends on the validity of some basic assumptions. The more
critical a system is, the more effort one should spend in reducing these as-
sumptions to the minimum, and in making them explicit.

In non-critical systems one may, for instance, take it for granted that

• the underlying hardware is reliable,
• one can rely on the correctness of the operating system, compiler, and

other basic software that is utilized,
• the environment is non-hostile and does not try to misuse or break the

system, and that
• some reasonable assumptions on ranges of input data, frequencies of ex-

ternal events, the capacity and processing speed of the system, etc., are
satisfied,
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but in critical systems all of these have to be carefully considered. This can
be done in two ways:

• On one hand, the specification can be made more and more detailed in
reflecting the practical details of implementations.

• On the other hand, implementations can be designed to make weaker as-
sumptions about the conditions under which they work as specified.

An important point in considering the satisfaction of a specification is
whether it is reasonable to assume that the required fairness properties are
also satisfied. After all, fairness is an abstraction, and its satisfaction may
depend, for instance, on various physical properties of the system, as well
as on implementation details of the system software that is used. Depending
on the criticality of the system, different levels of precision can be used in
showing that unfair executions are impossible or sufficiently unlikely in a
given implementation.

Concerning the above gas-burner example one can notice that the select
statement in Ada does not guarantee fair selection between the different accept
alternatives. In fact, it is possible, for instance, that an implementation always
selects the first alternative that is ready to be accepted. Therefore, if it is
possible for the sensors and module INTERFACE to invoke entry calls for
updating variable req s in each cycle of process ACTIONS, then this process
can spend all its time in accepting these calls, and fairness with respect to
other system actions will be violated. Reasonable assumptions on the physical
characteristics of the different components are, however, sufficient in this case
to convince us about the impossibility of such scenarios.

Another abstraction in specifications is the atomicity of actions, which
implies that possible intermediate states in the execution of an action need not
be considered. As an example, consider actions Start s and Stop s in the gas-
burner example, which abstract away the intermediate states in which only one
of the actuators has been operated.9 Suppose now that such an intermediate
state would be physically dangerous if the actuators were operated in a wrong
order. Then the atomicity assumption of actions Start s and Stop s could
be violated in the implementation, since another environment action, which
has not been modeled, could interfere with their execution.

2.4.4 Validation: Non-formalized Requirements

Another aspect in validation is that a specification never formalizes all require-
ments. To be useful, a formal specification concentrates on those properties
that are considered non-trivial for the problem at hand. Therefore, an imple-
mentation cannot be validated merely by comparing it to the specification.

9The Ada program is even insufficient for determining how long the system could
stay in such an intermediate state.
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In the gas-burner example, for instance, all real-time properties were left
unspecified,10 but the Ada implementation explicitly enforced some by de-
lay statements. In validating this implementation one should also consider
whether these are appropriate, taking into account that the semantics of the
delay statement in Ada 83 only requires that a process be delayed for at least
the time indicated.

Review Questions

Question 2.4.1 Why is it not possible, in general, to translate action systems
automatically into executable code?

Question 2.4.2 Why is the atomicity assumption of system actions satisfied
in the Ada implementation of the gas-burner example?

Question 2.4.3 Admitting that implementations are not formal objects,
how can one increase one’s confidence in the satisfaction of specifications in
life-critical systems?

Exercises

Exercise 2.4.1 Discuss the assumptions under which the gas-burner imple-
mentation can be considered to be an acceptable implementation of the given
specification.
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10Notice that time-related properties are relevant in all systems, not only those
that are called real-time systems. In ‘non-real-time systems’ they are, however, not
considered worth making explicit.
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string by another string according to given patterns. With nondeterminism,
an arbitrary sentence of a language is then generated.

In practical programming languages this kind of an execution model has
been used in production system languages, notably OPS5 [58], which have been
used for writing expert systems. In these, the goal is to find a terminating
execution with a ‘successful’ final state, and backtracking is essential in this
search. A crucial problem then is to control nondeterminism so that this search
becomes efficient.

As a language construct for high-level languages the idea of nondeter-
ministic choice appeared first in the iteration statement of Dijkstra’s guarded
command language [43, 44]. This was also the first language that was in-
tended for refining programs (or specifications) into more concrete or efficient
forms by systematic transformations. Unbounded nondeterminism was, how-
ever, explicitly rejected by Dijkstra [44] as “an insurmountable barrier to the
possibility of implementation.”

For the specification and design of concurrent and distributed systems an
action-oriented execution model was proposed by Back and Kurki-Suonio [20],
and also independently by Chandy and Misra in the UNITY language [33, 36].
In contrast to action systems, as presented here, UNITY has a uniform fairness
assumption that corresponds to weak fairness with respect to each individual
action.

An action-oriented execution model has also been proposed under the
name abstract state machines (previously also called dynamic structures or
evolving algebras) [27]. Otherwise, the characteristics of the associated ap-
proach to high-level modeling are, however, rather different from the ideas on
which this book is based.

Process communication by semaphores is due to Dijkstra [41]. Although
fair implementation is essential for them, Dijkstra rejected the theoretical no-
tion of fairness in one of his notes as “unworkable” [46]. This raised immediate
responses by Schneider and Lamport [180] and by Chandy and Misra [35],
which are instructive reading about the essence of fairness. The conclusion in
[180] is that “anyone who accepts the argument of [46], that fairness can be
ignored, must also be prepared to ignore termination and all other liveness
properties.”

The relationship between fairness and unbounded nondeterminism was
first shown by Olderog and Apt [164]. The textbook [61] by Francez has an
extensive treatment of fairness, mainly from the viewpoint of termination in
CSP-like languages for distributed programming.

The gas-burner example of this chapter appeared originally in [75] and
was also used in several papers in [72].
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Formal Properties of Behaviors

In this chapter we take a more formal look at reactive executions, whose
abstractions will be called behaviors. Temporal expressions and associated
mathematics will be introduced to express properties of behaviors and to
reason about them. This gives a formal foundation for the action language
and for the design methodology to be used with it.

The logic that will be used is a variety of linear-time temporal logics,
temporal logic of actions (TLA), in which the expressive power is constrained
in a manner that makes it better suited for our purposes.

Temporal logic will not be considered here as an axiomatic system. Instead,
it will be discussed from the viewpoint of its semantic interpretation in terms
of (linear) behaviors. A number of rules will be derived for the mathematical
manipulation of temporal expressions, in order that the reader gets some
familiarity with their use.

The structure of this chapter is as follows:

• In Sect. 3.1 we analyze the basic notions of state and state functions from
the viewpoint of using them in state predicates.

• Section 3.2 discusses the formalization of executions as sequences of states,
called behaviors. The notions of safety and liveness properties are intro-
duced and analyzed at a general level.

• Section 3.3 gives an introduction to temporal logic expressions in terms of
their semantic interpretation on behaviors, and to the basic mathematics
associated with them.

• Section 3.4 discusses how liveness properties can be expressed in TLA
using derived and combined operators.

• Relation to action systems, and various aspects of using TLA for specifi-
cation, are the topics of Sect. 3.5.
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3.1 States and State Functions

The notion of state is fundamental in all state-based approaches to reactive
systems. We start with discussing how state variables and other state functions
are understood in state predicates.

3.1.1 State Variables

A countably infinite number of state variables (or variables, for short) is as-
sumed. This set, denoted by Var, is universal and consists of all variables that
we can name. Since syntactic details are not of interest here, no fixed format
is given for the names of variables. The naming conventions that will be used
resemble those in programming languages.

All variables in Var are assumed to ‘exist’ in each state. In a specification
one can, however, make use of some subset X of these variables only, X ⊆ Var.
All other variables in Var are then of no concern to the specification. This is in
contrast to programming languages, where only those variables are considered
to exist that are used. Notice that the variables in conventional programs also
include the program counters of the control threads involved.

Unlike in most programming languages, variables have no types. That is,
a universal set Val of possible values is assumed. Set Val will not be explicitly
defined, but it is assumed to contain such countable sets1 as Booleans (B),
natural numbers (N), integers (Z), characters (C), strings (S), etc. In addi-
tion, to deal with real-time properties (to be discussed in Chap. 10), we will
also assume real numbers (R) to be included in Val, even though they make
Val an uncountable set. Structured and aggregated values, like lists, records,
sequences, sets, and multisets2 will also be used.

The subset X ⊆ Var of variables referred to in the gas-burner example of
Chap. 2 was

X = {req e, flam e, flow e, ign e, req s, flam s, flow s, ign s} .

Like all variables, these are understood to be untyped, in principle. They are,
however, Boolean variables in the sense that they do not possess any other
kinds of values in those states that are reachable in legal executions of the
given action system, and this property can also be mechanically checked. This
kind of typing of untyped variables will be discussed in more detail in Chap. 5.

3.1.2 States

The notion of state is another basic notion. It is assumed that each variable
has a unique value in every state and, conversely, all possible assignments of

1A set is countable if it is finite or if its elements can be mapped one-to-one on
natural numbers.

2A multiset is like a set that may contain several ‘copies’ of the same element.
Multisets are also called bags.
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values to variables constitute the different states. The set of all possible states
will be denoted by Σ, and symbols s and t will be used in the following to
denote individual states.3

The value of variable x ∈ Var in state s ∈ Σ will be denoted by s[[x]]. Here
[[x]] stands for the ‘meaning’ of x, and the prefix s indicates that this meaning
is evaluated or interpreted in state s.

By definition, every variable x ∈ Var has some value s[[x]] in each state
s ∈ Σ. For instance, variable z is understood to have some value in each state
discussed in the gas-burner example. However, since we were not interested
in z in this example, we did not specify how its value would change, and z is
therefore allowed to change arbitrarily.

3.1.3 State Functions

Any expression f that has a unique value (that belongs to Val) in each state
s ∈ Σ is called a state function. For state s the value of f will be denoted by
s[[f]].

State variables are a special case of state functions. Intuitively, state vari-
ables can be thought of as primitive state functions whose values are ‘stored’
or represented in each state as such. Other state functions are non-primitive,
and can be expressed in terms of state variables. In order to allow freedom in
choosing the representation of state functions we do not, however, determine
which of them are primitive and which are not.

Notations of arithmetic and set theory will be used in state functions
without further explanation.

Allowing variables to have arbitrary values in Val has the consequence
that expressions for state functions need not be well defined in all states. For
instance, arithmetic does not define the values of x/y and z + 1 when y = 0

and z = true. Each state function is, however, assumed to have a unique value
in each state, although this value is unknown when the associated expression
cannot be uniquely evaluated.

To avoid the problems that are caused by undefined or unknown values we
will make sure that we need not evaluate a state function in states in which it
is not well defined. We will return to this question in more detail in Sect. 3.5,
where the relationship between action systems and TLA will be discussed.4

3.1.4 State Predicates

A (concrete) state predicate P (or just predicate, for short) is an expression
that has a truth value s[[P]] in each state s ∈ Σ. State predicates are otherwise

3Notice that with an infinite �
� � , the state space � would be uncountably infinite

even if �
� �

were finite.
4In theoretical approaches to computing there are several different ways to deal

with undefined values, none of which is good for all purposes. The solution adopted
here serves best the purposes of this book.
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like truth-valued state functions, but the logical truth values, denoted by T
and F, are assumed not to belong to Val. Symbols P, Q, . . . will be used in
the following to denote state predicates.

The problem of undefined or unknown values also arises in connection with
expressions that represent state predicates, and the solution is the same as
for state functions: we will make sure that an expression for a state predicate
need not be evaluated in states in which its truth value is not well defined.

When s[[P]] is true for a concrete state predicate P, we say that state s

satisfies P, or that P holds in s. If there exists a state s ∈ Σ that satisfies P, P

is satisfiable. If P is satisfied by all states s ∈ Σ, it is a tautology.
Logical operators (∧, ∨, ¬, ⇒, ⇔) and quantifiers (∃ for ‘there exists’,

and ∀ for ‘for all’) are used in the normal manner in the construction of state
predicates. As for syntactic priorities, we adopt the convention that negation
(¬) and quantifiers (∃, ∀) are the strongest, that conjunction (∧) binds more
strongly than disjunction (∨), and that implication (⇒) and equivalence (⇔)
are the weakest. Arithmetic and relational operators are assumed to bind more
strongly than binary logical connectives.

As an example, if x, y ∈ Var, then the expression

∃m : (m ∈ Z ∧ x = m2 ∧ y = m3)

is a concrete state predicate, which can also be written as

∃m ∈ Z : (x = m2 ∧ y = m3) ,

and which is true in those states where x is the square and y is the cube
of some integer m. In this expression m is not a state variable, but a ‘logical
variable’ that is local to that expression. To distinguish such ‘logical’ variables
from state variables, whose values may change from one state to another, they
are also called rigid variables.

As further examples, consider state predicates on the variables in the gas-
burner example. Taking the definitions of Idle, Starting, and Ignited on
p. 37,5 state predicates

Idle ⇒ ¬(Starting ∨ Ignited) ,

Starting ⇒ ¬(Idle ∨ Ignited) ,

Ignited ⇒ ¬(Idle ∨ Starting)

are tautologies, whereas predicates

5When a variable � is understood to possess only Boolean values, as those in the
example are, its name � may also be used as such for the truth-valued expression

� � true. Notice that � � then stands for � � � true, not for � � false. The two
Boolean values, true and false, belong to �

� �
, and should not be confused with the

truth values T and F of predicates.
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flam s = true ∨ flam s = false , (3.1)
ign s = true ⇒ flow s = true , (3.2)

Idle ∨ Starting ∨ Ignited (3.3)

are not, although they happen to be satisfied by all states that are reachable
in the gas-burner example.

3.1.5 Predicate Expressions and Laws

In addition to concrete state predicates, predicate expressions may contain
predicate symbols, which then stand for arbitrary concrete state predicates.6

Such an expression is satisfiable if there exists an assignment of concrete state
predicates to predicate symbols so that the resulting concrete predicate is
satisfiable, and it is a tautology if all such assignments yield tautologies.

A tautology of the form P ⇒ Q or P ⇔ Q is called a (non-temporal) law.
If P ⇒ Q is a law, then every state that satisfies P (for some assignment of
concrete state predicates to the predicate symbols in P) also satisfies Q (for
the same assignment). Obviously, a law of the form P ⇔ Q can be understood
as shorthand for two laws, P ⇒ Q and Q ⇒ P.

As an example, the expression

¬(P ∧ Q) ⇔ ¬P ∨ ¬Q ,

where P and Q are predicate symbols, is a law that is known as de Morgan’s
law.

In proving that a predicate expression P ⇒ Q is a law we can utilize
transitivity: if P ⇒ R and R ⇒ Q are laws, then so also is P ⇒ Q. Furthermore,
if P ⇔ Q is a law, and Φ(P) is a predicate expression that contains P as a
subexpression, then Φ(P) ⇔ Φ(Q) is also a law.

Review Questions

Question 3.1.1 What are the differences between state variables, as dis-
cussed here, and variables in conventional programming languages?

Question 3.1.2 How do we deal with undefined values of expressions?

Question 3.1.3 What is the difference between state variables and rigid vari-
ables?

Question 3.1.4 What is the difference between true and T?

6Quantification of predicate symbols will not be allowed. Therefore, predicate
symbols are always free variables in predicate expressions.
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Question 3.1.5 Why is predicate b = true ∨ b = false not a tautology for a
state variable b that is known to have only Boolean values?

Question 3.1.6 What is meant by a predicate expression being satisfiable,
a tautology, or a law?

Exercises

Exercise 3.1.1 Formulate further state predicates that are satisfied by all
states that are reachable in the gas-burner example of Chap. 2.

3.2 Properties of Behaviors

Executions of a reactive system generate sequences of states. In this section
we discuss the logical properties of such sequences at a general level, without
yet introducing a language of temporal logic to express them.

3.2.1 Behaviors

While a state s ∈ Σ models an instantaneous situation in an execution, a com-
plete execution can be modeled as a sequence of states. Such executions are,
in general, nonterminating. Therefore, we are interested in infinite sequences
of states σ = 〈s0, s1, s2, . . . 〉, si ∈ Σ, which are called behaviors. The set of all
possible behaviors σ is denoted by Σ � .

Assuming all behaviors to be infinite is no essential restriction, since ter-
minating executions can always be modeled as ones where the final state is
repeated indefinitely. Notice that, although we can in practice generate only
prefixes (i.e., finite initial parts) of behaviors, a behavior is defined as a com-
pletely given infinite sequence of states.7

The first state s0 of a behavior σ = 〈s0, s1, s2, . . . 〉 is called its initial state.
Each pair of consecutive states (si, si+1) in σ is called a step in σ.

Let X be the set of variables that are of interest in a specification. A step
(si, si+1) in which all variables in X have the same values in both si and si+1

is then called a stuttering step, or an X-stuttering step, if we wish to make X

explicit. A terminating execution now corresponds to a behavior that ends in
indefinite stuttering.

7Therefore, even when only one Boolean state variable is of interest, we can
distinguish between an uncountably infinite number of different behaviors, although
the number of different finite prefixes of them is still countable (see Exercise 3.2.1).
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3.2.2 Properties and Characteristic Sets

By a (logical) property (of behaviors) we understand a mapping of behaviors
to truth values. For a property φ and a behavior σ ∈ Σ � we say that σ

satisfies φ, or that φ holds for σ, if φ(σ) is true.
For any property φ, its characteristic set is defined as the set Sφ, Sφ ⊆ Σ � ,

of those behaviors for which the property φ holds. Denoting identically true
and false properties by T and F, respectively, we have ST = Σ � and SF = ∅.
That is, the identically true property is satisfied by all behaviors, but the
identically false property is satisfied by none of them.

�
T

� � � �
�
T

� �� �

Fig. 3.1. Venn diagrams for properties; the one on the right illustrates the situation
where � � �

Obviously, logical combinations of properties correspond to set-theoretic
operations on their characteristic sets,

Sφ∧ψ = Sφ ∩ Sψ ,

Sφ∨ψ = Sφ ∪ Sψ ,

S¬φ = Sφ ,

and can therefore be illustrated by Venn diagrams, where properties are rep-
resented by their characteristic sets (see Fig. 3.1). In particular, implication
between properties corresponds to set inclusion in Venn diagrams,

φ ⇒ ψ iff Sφ ⊆ Sψ ,

φ ⇔ ψ iff Sφ = Sψ .

3.2.3 Safety Properties

Safety properties are an important class of formal properties of behaviors.
Informally, a safety property can be characterized as a property of the form
‘something bad never happens’.

The crucial characteristic of a safety property is that its violation can al-
ways be detected from some finite prefix of a behavior. Operationally speak-
ing, once a safety property has been violated in an execution, this cannot be
remedied in the future. More precisely, every behavior σ = 〈s0, s1, s2, . . . 〉 not
satisfying a safety property φ, i.e., σ �∈ Sφ, has a finite prefix 〈s0, . . . , sn〉 that
cannot be extended to any (infinite) behavior in Sφ.
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As an example, consider a property φ that is satisfied by a behavior σ if
state predicate (3.1) on p. 61 is true in all states of σ. The ‘bad thing’ that
should not happen is then that flam s is neither true nor false in some state.
Obviously, if σ does not have property φ, then there is a first state sn in σ

where (3.1) does not hold, and the prefix 〈s0, . . . , sn〉 cannot be extended to
any τ, τ ∈ Σ � , that would satisfy φ. Therefore, φ is a safety property.

In ordinary non-reactive executions, partial correctness is an example of
a safety property. Informally it means that a program never terminates with
an incorrect result. In terms of behaviors, we can understand ‘terminal’ and
‘the value of the result variable is correct’ as two state predicates P and Q,
respectively. The ‘bad thing’ that should not happen is then to enter a state
that satisfies P ∧ ¬Q.

Another typical example of safety properties is that no wrong or superflu-
ous messages are received in a message-transfer system. That is, every message
that is received has also been sent, and no message is received more than once.

3.2.4 Liveness Properties

Liveness properties are another important class of formal properties of behav-
iors. Informally, a liveness property is characterized to have the form ‘some-
thing good will eventually happen’.

The crucial characteristic of a liveness property is that its violation cannot
be detected from any finite prefix of a behavior. In other words, given a liveness
property ψ, every finite sequence of states 〈s0, . . . , sn〉 can be extended to
some (infinite) behavior that belongs to Sψ.

As an example, consider a property ψ that is satisfied by a behavior σ,
if predicate flam s = true holds in some state of σ. The ‘good thing’ that
should happen is then that flam s = true holds in some state. Since any
finite sequence of states can be extended to contain such a state, this is a
liveness property.

In ordinary non-reactive programs, termination is an example of a liveness
property. Reaching a terminal state (i.e., one that satisfies the state predicate
P defining a state to be terminal) then is the ‘good thing’ that should happen.
Since every state sequence can be extended to contain a state that satisfies P,
this is a liveness property.

In message transmission, the property that every message that has been
sent will also be received is another liveness property.

3.2.5 Mixed Properties

It will be shown below that each formal property of behaviors can be expressed
as a conjunction of a safety property and a liveness property. That is, each
property is either a (pure) safety or a liveness property, or a mixed property
that consists of a safety part and a liveness part.
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Total correctness of a non-reactive program is an example of a mixed prop-
erty, defined as the conjunction of partial correctness and termination. Simi-
larly, correctness of message transmission is the conjunction of not receiving
anything that has not been sent (or receiving a message more than once), and
eventually receiving every message.

3.2.6 Limitations of Potential Infinity

In practice one can deal with infinity only as ‘potential’ infinity, which can
be managed in terms of arbitrarily large finite approximations, but cannot
be ‘observed’ in its entirety. The execution of a nonterminating program, for
instance, can be observed for any finite number of steps but, in its entirety,
an infinite execution is beyond any practical possibilities for observation.

Our definition of behaviors as infinite state sequences means that they
provide a model of nonterminating executions, which cannot be observed in
their entirety.8 This has some important consequences for the properties that
are of interest to us.

As an example, consider two properties defined as follows:

• Property φ: the value of state variable x is always either 0 or 1, and x = 1

at least once.
• Property ψ: the value of state variable x is always either 0 or 1.

Obviously, Sφ is a proper subset of Sψ, since a behavior with x constantly 0

satisfies property ψ but not φ. Suppose now that we can observe only finite
prefixes of behaviors. Then, for an arbitrary behavior σ ∈ Sψ we cannot
distinguish whether it belongs to Sφ or not, since the value of x may remain
0 for any finite number of steps and then turn into 1.

3.2.7 The Closure of a Property

To deal with the above phenomenon formally, we define a metric for mea-
suring distances between behaviors in Σ � as follows. For two behaviors
σ = 〈s0, s1, . . . 〉, τ = 〈t0, t1, . . . 〉, their distance dist(σ, τ) is defined to be
2−n if they first differ in their (n + 1)st states, i.e., si = ti for i < n, but
sn �= tn.

Obviously, distance dist satisfies the crucial characteristics of metric that
dist(σ, τ) = dist(τ, σ) ≥ 0 for all σ, τ ∈ Σ � , and dist(σ, τ) = 0 if and only if
σ = τ. The maximum distance in this metric is 1, and the longer the prefixes
are for which σ and τ agree, the closer they are to each other.

As an example, let 1 . . . denote (the set of) behaviors 〈s0, s1, . . . 〉 in Sφ

where s0[[x]] = 1. Similarly, let 01 . . . , 001 . . . , etc., denote those where s0[[x]] =

8Since there is an infinite number of variables, no state can be observed in its
entirety, either. In the following we assume, however, that for each state it is possible
to observe whether it satisfies those state predicates that we are interested in.
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Fig. 3.2. Illustration of the closure of a property � ,
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0 and s1[[x]] = 1, s0[[x]] = s1[[x]] = 0 and s2[[x]] = 1, etc., and let 0 . . . denote
those in Sψ where x = 0 in all states. Figure 3.2 then illustrates the above
properties φ and ψ. Obviously, for any behavior σ ∈ 0 . . . (with x constantly
0) and any ε > 0 there are behaviors τ ∈ Sφ for which dist(σ, τ) < ε. That is,
there is a sequence of behaviors τ0, τ1, . . . ∈ Sφ such that limi �

�

dist(σ, τi) =
0 or, in other words, limi �

�

τi = σ.
For any property φ we now define its closure Cl(φ) so that its characteristic

set SCl(φ) contains all behaviors in Sφ and also all limits of infinite sequences
of behaviors in Sφ, i.e.,

SCl(φ)
∆
= {τ | ∀ε > 0 : ∃σ ∈ Sφ : dist(σ, τ) < ε} .

Intuitively, behaviors in SCl(φ) either belong to Sφ or cannot be distinguished
from these by looking at finite prefixes only. More formally, SCl(φ) is the
smallest superset of Sφ that is closed under the metric defined by dist.

Obviously, implications

φ ⇒ Cl(φ) , (3.4)
if φ ⇒ ψ then Cl(φ) ⇒ Cl(ψ) , (3.5)

Cl(Cl(φ)) ⇔ Cl(φ) (3.6)

hold for all properties φ and ψ (see Exercise 3.2.7).

3.2.8 Formal Characterization of Safety and Liveness

Property φ, and correspondingly also its characteristic set Sφ, is said to be
closed if it is equivalent to its closure, i.e., if φ ⇔ Cl(φ) or Sφ = SCl(φ).
It now follows from the above definition of safety properties that these are
exactly those properties that are closed under dist (Exercise 3.2.8). In other
words, safety properties φ can be formally characterized by
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φ ⇔ Cl(φ) or Sφ = SCl(φ) . (3.7)

Correspondingly, from the above definition of liveness properties it follows
that liveness properties are exactly those properties whose closure under dist

is the identically true property (Exercise 3.2.9). That is, liveness properties φ

can be formally characterized by

Cl(φ) ⇔ T or SCl(φ) = Σ � . (3.8)

By (3.6), the closure Cl(φ) is a safety property for any φ. More exactly, it
is the strongest safety property that is implied by φ. In terms of characteristic
sets, SCl(φ) is the smallest closed set that contains Sφ.

� �

�
T

� � � � � �

Fig. 3.3. Illustration of � � �
� �
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� �

� �
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Each property φ of behaviors can now be expressed as

φ ⇔ Cl(φ) ∧ (¬Cl(φ) ∨ φ) , (3.9)

which corresponds in a Venn diagram (see Fig. 3.3) to

Sφ = SCl(φ) ∩ (SCl(φ) ∪ Sφ) .

It will be left to the reader to show that ¬Cl(φ) ∨ φ is a liveness property
(Exercise 3.2.4). Equivalence (3.9) therefore shows that each property of be-
haviors is a conjunction of a safety property and a liveness property.

Review Questions

Question 3.2.1 What is meant by stuttering?

Question 3.2.2 What is meant by a property of behaviors?

Question 3.2.3 What is meant by safety and liveness properties?

Question 3.2.4 How can total correctness be characterized as a conjunction
of a safety property and a liveness property?

Question 3.2.5 What does it mean that a set is closed under a given metric?
Why is dist, as defined in the text, a reasonable metric for behaviors?

Question 3.2.6 What are the formal characterizations of safety and liveness
properties?
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Exercises

Exercise 3.2.1 Show that the number of different finite strings of 0’s and
1’s is only countably infinite, but the number of infinite strings of them is
uncountably infinite.

Exercise 3.2.2 Check that the metric determined by dist satisfies the tri-
angle inequality dist(σ1, σ2) ≤ dist(σ1, τ)+dist(τ, σ2) for all σ1, σ2, τ ∈ Σ � ,
and that equality holds only when τ = σ1 or τ = σ2.

Exercise 3.2.3 Show that ψ = Cl(φ) in Sect. 3.2.6 (p. 65).

Exercise 3.2.4 Show that the property ¬Cl(φ) ∨ φ is a liveness property
for every property φ.

Exercise 3.2.5 Show that only the identically true property is both a safety
property and a liveness property.

Exercise 3.2.6 Is the identically false property a safety property or a liveness
property?

Exercise 3.2.7 Check that (3.4)–(3.6) on p. 66 hold for all properties φ and
ψ.

Exercise 3.2.8 Show that the formal characterization of safety properties
in (3.7) on p. 67 follows from the definition given in Sect. 3.2.3 (p. 63).

Exercise 3.2.9 Show that the formal characterization of liveness properties
in (3.8) on p. 67 follows from the definition given in Sect. 3.2.4 (p. 64).

Exercise 3.2.10 Considering the variables in the gas-burner example in
Chap. 2, give an infinite sequence of behaviors that correspond to fair ex-
ecutions of the action system, but whose limit is a behavior that does not.

Exercise 3.2.11 Consider the following properties of behaviors:

• Property φ1: The value of variable x is always 0, 1, or 2.
• Property φ2: φ1 and, in addition, x will be turned from 1 to some other

value at most once.
• Property φ3: φ1 and, in addition, x = 1 in infinitely many states.
• Property φ4: φ1 and, in addition, either φ2 or x �= 2 in all states.

For each φi, give an action system to generate behaviors where the value of
x changes arbitrarily, as allowed by property φi.

Exercise 3.2.12 What are the closures of the properties in Exercise 3.2.11?

Exercise 3.2.13 Is it reasonable to say that all interesting properties of pro-
grams are formalizable in terms of safety and liveness properties?
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3.3 Temporal Expressions

Temporal expressions are logical expressions that can be interpreted as prop-
erties of behaviors. The associated logics for reasoning are called temporal
logics. In this section temporal expressions will be introduced in the form
they are used in TLA, temporal logic of actions.

3.3.1 Semantic Interpretation

The semantics of temporal logic is provided by evaluating (concrete) temporal
expressions E for behaviors σ ∈ Σ � . The truth value obtained by evaluating
E for a behavior σ ∈ Σ � is denoted by σ[[E]]. Symbols E, F, . . . will be used in
the following to denote temporal expressions.

If σ[[E]] is true, we say that σ satisfies E, or that E holds for σ. A set of
behaviors satisfies E if all its behaviors satisfy E.

A (concrete) temporal expression is (temporally) satisfiable if there exists
a behavior that satisfies it. It is a (temporal) tautology if all behaviors σ ∈ Σ �

satisfy it.
In addition to concrete temporal expressions, a temporal expression may

contain symbols that represent arbitrary temporal expressions, state predi-
cates, or actions (to be introduced below). Such an expression is (temporally)
satisfiable if there exists an assignment of concrete counterparts to these sym-
bols that makes the resulting concrete expression satisfiable. It is a (temporal)
tautology if all such assignments yield a tautology.

3.3.2 Extending Predicate Logic

Temporal logic is an extension of predicate logic. All non-temporal expressions
therefore also have meanings as temporal expressions, where predicate sym-
bols now stand for arbitrary concrete temporal expressions. Such expressions
are also temporally satisfiable or temporal tautologies iff their non-temporal
interpretations are satisfiable or tautologies, respectively. In particular, all
non-temporal laws generalize into temporal laws. For instance, de Morgan’s
law is a (temporal) tautology for all temporal expressions E and F:

¬(E ∧ F) ⇔ ¬E ∨ ¬F .

Semantically, when a state predicate is used as a temporal expression, it
is interpreted as an initial condition for a behavior. That is, for any state
predicate P and behavior σ = 〈s0, s1, s2, . . . 〉, the meaning of P for σ is the
same as its meaning for s0 as a state predicate, i.e.,

σ[[P]]
∆
= s0[[P]] . (3.10)
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To make temporal logic an extension of predicate logic, logical operators
(∧, ∨, ¬, ⇒, ⇔) have to be used in the same meanings. That is, for any tem-
poral expressions E, F, and behavior σ = 〈s0, s1, s2, . . . 〉,9

σ[[[E ∧ F]]
∆
= σ[[E]] ∧ σ[[F]] , (3.11)

σ[[E ∨ F]]
∆
= σ[[E]] ∨ σ[[F]] , (3.12)

σ[[¬E]]
∆
= ¬σ[[E]] , (3.13)

σ[[E ⇒ F]]
∆
= σ[[E]] ⇒ σ[[F]] , (3.14)

σ[[E ⇔ F]]
∆
= σ[[E]] ⇔ σ[[F]] . (3.15)

3.3.3 Temporal ‘Always’ Operator

In addition to operators of predicate logic, a unary temporal operator is needed,
denoted by � and read as box or always. For any temporal expression E and
behavior σ = 〈s0, s1, s2, . . . 〉 its semantics is defined by

σ[[�E]]
∆
=

∧

i≥0

σi[[E]] , (3.16)

where σi denotes the suffix 〈si, si+1, si+2, . . . 〉 of σ. In other words,

• a behavior σ ∈ Σ � satisfies �E iff σ and all its suffixes satisfy E.

As a unary operator, � is used as a syntactically more binding operator
than any binary operators.

Using the above semantic definitions it is easy to prove the following tem-
poral laws for �:

�T ⇔ T , (3.17)
�F ⇔ F , (3.18)

��E ⇔ �E , (3.19)
�E ⇒ E , (3.20)

�E ∧ �F ⇔ �(E ∧ F) . (3.21)

To check (3.21), for instance, we have for an arbitrary σ ∈ Σ � :

σ[[�E ∧ �F]] ⇔ σ[[�E]] ∧ σ[[�F]] by (3.11)⇔ (σ0[[E]] ∧ σ1[[E]] ∧ · · · ) ∧ (σ0[[F]] ∧ σ1[[F]] ∧ · · · ) by (3.16)⇔ (σ0[[E]] ∧ σ0[[F]]) ∧ (σ1[[E]] ∧ σ1[[F]]) ∧ · · · by commutativity⇔ σ0[[E ∧ F]] ∧ σ1[[E ∧ F]] ∧ · · · by (3.11)⇔ σ[[�(E ∧ F)]] by (3.16) .

9On the left-hand side the operators are part of the language for temporal ex-
pressions; on the right-hand side they denote operators for truth values.



3.3 Temporal Expressions 71

3.3.4 State Invariants

For a state predicate P, �P expresses that P is a state invariant that holds in all
states of a behavior. Obviously, both P (understood as a temporal predicate)
and �P are safety properties. If P is a tautology as a state predicate, then
both P and �P are temporal tautologies.

As examples of state invariants, consider

�(flam s = true ∨ flam s = false) ,

�(ign s = true ⇒ flow s = true) ,

�(Idle ∨ Starting ∨ Ignited) ,

which are satisfied by all behaviors that are generated by executions in the
gas-burner example. In other words, (3.1), (3.2), and (3.3) on p. 61 are state
invariants for the behaviors in this example.

In this connection a warning is in place about substituting subexpressions
in temporal expressions by ones that may be mistakenly considered as equiv-
alent. For instance, if one has shown that both P ⇔ Q and �P hold for a
behavior σ ∈ Σ � , one still cannot decide that �Q would hold for it. This is
because, as a temporal expression, P ⇔ Q refers only to the initial state of
σ. However, if P ⇔ Q is a law (which is true for an arbitrary state), then the
conclusion is correct.

In fact, it can be immediately checked that, if P ⇒ Q (P ⇔ Q) is a
non-temporal law, then �P ⇒ �Q (�P ⇔ �Q) is a temporal law.

3.3.5 Actions

In programming languages, the same name can be used of a variable on both
sides of an assignment statement, even though the value before the assign-
ment differs from the value afterwards. In a language of logic the situation
is different. Therefore, in order to speak about steps in a behavior, we need
a ‘mirror set’ of Var, denoted by Var ′, so that variables in Var will refer to
state variables before a step is taken, and those in Var ′ will refer to them
after the step.

Let Var ′ therefore denote the set which for any state variable x ∈ Var

contains a corresponding primed variable x ′,

Var ′ ∆
= {x ′ | x ∈ Var} .

For any state function f, we will write f ′ to denote the expression obtained
by replacing all state variables in f by the corresponding primed variables.
Similarly, for a state predicate P this replacement gives an expression that
will be denoted by P ′.

An action is defined as a truth-valued expression that depends on both
unprimed and primed variables. Symbols A, B, . . . will be used in the following
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to denote actions. A concrete action A assigns a truth value s[[A]]t to any pair
of states (s, t), s, t ∈ Σ. This truth value is obtained by evaluating expression
A so that unprimed variables x ∈ Var are replaced by their values in state s,
i.e., by s[[x]], and primed variables x ′ ∈ Var ′ are replaced by their values in
state t, i.e., by t[[x]].

When s[[A]]t is true, step (s, t) is said to satisfy (a concrete) action A, and
it is then called an A step. An action expression may also contain symbols for
state predicates (both unprimed and primed) and for actions. An action ex-
pression A is satisfiable, if there exists an assignment of concrete counterparts
to these symbols so that some pair of states (s, t) is an A step for this assign-
ment. An identically true action expression, which for all such assignments is
satisfied by all steps, is a tautology.

Two actions A and B are said to be disjoint if their logical conjunction is
identically false, i.e., if

A ∧ B ⇒ F

is a tautology.
In the semantic interpretation of temporal expressions, (a concrete) action

A is satisfied by behavior σ = 〈s0, s1, s2, . . . 〉 if the first step in σ is an A step,

σ[[A]]
∆
= s0[[A]]s1 . (3.22)

Similarly to state predicates, if A is a tautology as an action expression,
then both A and �A are temporal tautologies, and if A ⇒ B (A ⇔ B) is a
non-temporal law for action expressions A and B, then �A ⇒ �B (�A ⇔ �B)
is a temporal law.

A state predicate P can be understood as a special case of an action where
no primed variables appear. Obviously, the temporal interpretation of P is
then independent of whether it is considered a state predicate or an action.
As an action, a primed state predicate P ′ is an action that contains only
primed state variables.

3.3.6 Stuttering

Notation StutterX will be used to denote an X-stuttering action, which
changes no variables in X:

StutterX
∆
= ∀x ∈ X : (x ′ = x) . (3.23)

An action A is non-X-stuttering (or non-stuttering, for short, when X is
understood from context) if it changes at least one variable in X,

A ⇒ ∃x ∈ X : (x ′ �= x) .

For any action A and a set of variables X, the stuttering closure [A]X and
non-stuttering restriction 〈A〉X of A are defined as
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[A]X
∆
= A ∨ StutterX , (3.24)

〈A〉X ∆
= A ∧ ¬StutterX , (3.25)

which are each other’s duals in the following sense:

¬〈A〉X ⇔ [¬A]X . (3.26)

We take it as a convention that, whenever subscript X appears in these
kinds of contexts, no variables outside X are referenced. For simplicity we will
also omit subscript X, when X consists of all variables that we are interested
in, or is otherwise understood from context.

Obviously, for any two actions A and B we have

[A] ∧ [B] ⇔ [A ∧ B] , (3.27)
[A] ∨ [B] ⇔ [A ∨ B] , (3.28)

and also dually,

〈A〉 ∧ 〈B〉 ⇔ 〈A ∧ B〉 , (3.29)
〈A〉 ∨ 〈B〉 ⇔ 〈A ∨ B〉 . (3.30)

3.3.7 Enabling of Actions

For any action A we will write Enabled A to denote the state predicate
which is true exactly when there is a possible assignment of values to primed
variables so that A evaluates to true:

s[[Enabled A]]
∆
= ∃t ∈ Σ : s[[A]]t . (3.31)

Expression (Enabled A) ′ will be abbreviated as Enabled ′ A.
The following are some obvious laws for actions and state predicates:10

Enabled StutterX ⇔ T , (3.32)
Enabled P ⇔ P , (3.33)

P ∧ StutterX ⇒ P ′ , (3.34)
A ⇔ Enabled A ∧ A , (3.35)

Enabled (P ∧ A) ⇔ P ∧ Enabled A , (3.36)
Enabled(A ∧ B) ⇒ Enabled A ∧ Enabled B , (3.37)
Enabled(A ∨ B) ⇔ Enabled A ∨ Enabled B , (3.38)

(A ⇒ B) ⇒ (Enabled A ⇒ Enabled B) . (3.39)

10In (3.34), � is assumed to contain all variables that may appear in the concrete
predicates by which the predicate symbol � can be replaced.
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3.3.8 TLA: Insensitivity to Stuttering

According to the semantic definition of �, a behavior σ = 〈s0, s1, s2, . . . 〉
satisfies �A if all its steps (si, si+1) satisfy action A. In general, inserting
additional stuttering steps into σ may destroy this satisfaction. There are,
however, reasons not to make a distinction between behaviors that differ from
each other only by the X-stuttering steps that they contain.
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Fig. 3.4. Illustration of need for insensitivity to stuttering

To explain the intuitive background for this, let acceptable behaviors be
specified by temporal expression E that involves variables in X ⊆ Var. When E

is refined into temporal expression F that describes behaviors in an implemen-
tation (or in a more detailed specification), set X is, in general, extended by
further variables into a larger set Y, X ⊆ Y. Expression F (which uses this ex-
tended set) may then be satisfied by behaviors that contain such X-stuttering
steps where variables in Y \ X are modified11 (see Fig. 3.4, where X = {x} and
Y = {x, y}). It would then be unreasonable if these additional X-stuttering
steps would make the implementation (or refinement) not to satisfy E. If the
satisfaction of E is insensitive to addition and removal of stuttering steps, then
this cannot happen.

Another way to look at this is to understand a behavior as a sequence
of observations of how the variables in a given set X behave in program exe-
cutions. The minimum requirement for such observations is that all changes
in these variables are recorded. Otherwise, there are no special reasons for
determining what the ‘correct’ frequency of observations should be. Increas-
ing it from this minimum will only insert X-stuttering steps. Intuitively, this
does not add any information but does not yield essentially different behaviors
either.

Constraining temporal expressions so that their satisfaction is guaranteed
to be insensitive to stuttering will decrease their expressive power. Notice,
however, that expressive power is not as such a measure for the goodness of a

11Operator ‘ � ’ is used to denote set difference.
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language of logic. Obviously, one has to be able to express what is considered
important, but additional power may only increase complexity.

The desired insensitivity to stuttering is achieved by weakening the expres-
sive power of temporal expressions so that actions are allowed to appear only
in subexpressions of the forms �[A]X and Enabled A. With this constraint,
temporal logic is called temporal logic of actions or TLA.

3.3.9 Step Invariants

An expression of the form �[A] expresses that [A] is a step invariant. Accord-
ing to the semantic definition of the box operator (see Sect. 3.3.3, p. 70),

• behavior σ = 〈s0, s1, s2, . . . 〉 satisfies �[A]X if each step (si, si+1), i ≥ 0,
in σ either satisfies A or is an X-stuttering step,

as illustrated in Fig. 3.5. For instance, all legal behaviors in the gas-burner
example satisfy the step invariant expression

�[¬flow s ∧ flow s ′ ⇒ ign s ′] .

� � � � · · · � � · · ·

� � � � � � � � � � � �

Fig. 3.5. Illustration of a behavior satisfying a step invariant

Comparing state invariants and step invariants one can notice that �P

is stronger than �[P] or P ∧ �[P] (see Exercise 3.3.7). In fact, we have the
following laws (Exercise 3.3.11):

�P ⇔ P ∧ �[P ∧ P ′] (3.40)⇔ P ∧ �[P ′] (3.41)⇔ P ∧ �[P ⇒ P ′] . (3.42)

The validity of these laws can easily be checked by considering their seman-
tic interpretations for arbitrary behaviors σ = 〈s0, s1, s2, . . . 〉. As an example,
consider the direction ⇐ in (3.40). For this it is sufficient to show that, if σ

does not satisfy �P, then it does not satisfy either P or �[P ∧ P ′].
If σ does not satisfy �P, there is a first state si in σ that does not satisfy

P. If i = 0, then σ does not satisfy P (see top part in Fig. 3.6). Otherwise, step
(si−i, si) does not satisfy [P ∧ P ′], and σ therefore cannot satisfy �[P ∧ P ′]
(see bottom part in Fig. 3.6).



76 3 Formal Properties of Behaviors

� �

� �

· · ·

� �
�

�

�

· · · � �

� �

· · ·

�

�
�

�
�

′ �

Fig. 3.6. If � does not satisfy � � , it does not satisfy either � or �
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As an example of how temporal laws can be used in deductions, let us see
how the law

P ∧ �[¬P] ⇒ �[F] (3.43)

follows from those given above. On one hand, the left-hand side of (3.43)
implies12 �[¬P]. On the other hand, since ¬P ⇒ ¬P ∨ P ′ is identically true,
then also �[¬P] ⇒ �[¬P ∨ P ′] is identically true, and we have

P ∧ �[¬P] ⇒ P ∧ �[¬P ∨ P ′]⇒ P ∧ �[P ⇒ P ′]⇒ �P by (3.42)⇒ �[P ∧ P ′] by (3.40)⇒ �[P] ∧ �[P ′] by (3.27) and (3.21)⇒ �[P] .

Therefore,

P ∧ �[¬P] ⇒ �[¬P] ∧ �[P]⇒ �[¬P ∧ P] by (3.21) and (3.27)⇒ �[F] .

3.3.10 Stability Predicates

Law (3.42) contains a step invariant �[P ⇒ P ′], which states that, once P

is true, it will never turn false again. If a set of behaviors satisfies this step
invariant, then P is called stable (for this set of behaviors). A special notation
is introduced for such stability predicates:

stable P
∆
= �[P ⇒ P ′] . (3.44)

12Non-temporal laws, such as the one used here, will not be explicitly mentioned.
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A related but weaker property is that, once P is true, it will stay true
unless action A is executed. The following notation will be used to express
such unless predicates:

stable P unless 〈A〉 ∆
= �[P ⇒ P ′ ∨ A] . (3.45)

The unless operator is often convenient for properties that appear in re-
quirements specifications. As can be seen from its definition, it always gives a
safety property.

Analogous notations are also introduced for state functions that are steady
in the sense that their values are not changed (except possibly by a given
action):13

steady f
∆
= �[f ′ = f] , (3.46)

steady f unless 〈A〉 ∆
= �[f ′ = f ∨ A] . (3.47)

3.3.11 Quantification of State Variables

In specification it is often convenient (or even necessary) to utilize also auxil-
iary variables. These are state variables that are not of interest as such, but
serve an auxiliary role in the actions. If such auxiliary variables have no effect
on those variables that are considered to be essential, they can be compared to
‘instrumenting’ a program to record some properties of its execution history
explicitly. More generally, they can also be used to control how the essential
state variables are changed in actions.

In TLA the auxiliary role of a state variable is indicated by boldface exis-
tential quantification (∃∃∃). For instance, if E is a TLA expression (presumably
involving variable x ∈ Var), then

∃∃∃x : E

is also a TLA expression, but this quantified expression no longer specifies
anything about variable x ∈ Var. Since quantification can be understood as
‘hiding’ of variables, quantified state variables are also called hidden variables.

Intuitively, quantification of state variables means that it does not really
matter what the actual values of these variables are in behaviors, or how
they change, provided that all essential variables behave as specified. More
precisely, let E be a TLA expression involving variables in X ⊆ Var. A behavior
σ ∈ Σ � then satisfies ∃∃∃x : E if it can be transformed by the following steps
into a behavior τ ∈ Σ � that satisfies E:

• Insert finite numbers of X-stuttering steps arbitrarily before any steps in
σ, yielding some behavior σ ′.

• Replace the values of variable x in the states of σ ′ by arbitrary values.
13Notice the difference between constants, which cannot change by definition, and

steady values, which do not change in the behaviors satisfying a given steadiness
property.
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Review Questions

Question 3.3.1 What is meant by semantic interpretation of temporal ex-
pressions?

Question 3.3.2 How are state predicates interpreted as actions and as tem-
poral expressions?

Question 3.3.3 What is the syntactic restriction that TLA imposes on tem-
poral expressions?

Question 3.3.4 Why has TLA been designed to be insensitive to stuttering?

Question 3.3.5 What is meant by quantified state variables, and why are
they needed?

Exercises

Exercise 3.3.1 Verify the laws in Sect. 3.3.3 (p. 70) using the semantic in-
terpretation of temporal expressions.

Exercise 3.3.2 Show that, if E ⇒ F is a law for some temporal expressions
E and F, then so is �E ⇒ �F.

Exercise 3.3.3 The converse of the statement in Exercise 3.3.2 is not true.
Give temporal expressions E and F for which �E ⇒ �F is a law, but E ⇒ F is
not.

Exercise 3.3.4 Give a state invariant that characterizes the set of reachable
states in the gas-burner example of Chap. 2.

Exercise 3.3.5 Explain the meanings of the following temporal expressions:
P ⇒ Q, �(P ⇒ Q), �[P ⇒ Q], �P ⇒ �Q.

Exercise 3.3.6 Which behaviors satisfy �[F]?

Exercise 3.3.7 Which behaviors satisfy �[P] but not �P? Which behaviors
satisfy P ∧ �[P] but not �P?

Exercise 3.3.8 Why is Enabled P ′ ⇔ T not a law?

Exercise 3.3.9 Why is the law (3.37) on p. 73 only an implication, not an
equivalence?

Exercise 3.3.10 Discuss different interpretations of the statement ‘When P

is true, it will stay true at least until Q is true’ and formulate them in TLA.

Exercise 3.3.11 Verify laws (3.40)–(3.42) on p. 75 using their semantic in-
terpretations.
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3.4 Expressing Liveness Properties

The basic temporal operator in TLA is the box operator and, in principle,
no further temporal operators are required. Derived operators are, however,
needed for convenience in formulating liveness properties, and are introduced
in this section. The discussion is restricted to expressions without quantified
state variables.

3.4.1 Eventualities

Negation and � can be used to express liveness properties. For instance, the
property that state predicate P is satisfied in at least one state can be ex-
pressed as ¬�¬P. This would, however, lead to complicated formulation of
properties that are intuitively simple.

The derived operator � (read: diamond or eventually) is therefore defined
for an arbitrary temporal expression E by

�E
∆
= ¬�¬E . (3.48)

The semantics of the box operator (3.16) then gives us

σ[[�E]] =
∨

i≥0

σi[[E]] , (3.49)

where σ = 〈s0, s1, s2, . . . 〉 and σi = 〈si, si+1, si+2 . . . 〉. In particular, the
meaning of �P is that P holds in at least one state si, i ≥ 0.

The following is a useful law about the relationship between � and �:

�E ∧ �F ⇒ �(E ∧ F) . (3.50)

It is left as an exercise to the reader (Exercise 3.4.13) to show how this can
be deduced from previously given temporal laws.

The restrictions on using actions in TLA apply, of course, also to eventu-
alities. Therefore, �E, for instance, is not a legal TLA expression for all TLA
expressions E. It is easy to see, however, that the following equivalences hold:

�〈A〉X ⇔ ¬�¬〈A〉X (3.51)⇔ ¬�[¬A]X . (3.52)

This shows that expressions of the form �〈A〉 do not violate the rules for
using actions in TLA expressions, and will therefore be allowed in TLA.

3.4.2 Arity of Operators

The number of operands for an operator is called its arity. Negation (¬),
as well as existential and universal quantification of rigid variables (∃m :,
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∀m :), are unary operators with arity 1, while conjunction (∧), disjunction
(∨), implication (⇒), and equivalence (⇔) are binary operators with arity
2. Temporal operators box (�), diamond (�), stuttering closure ([· · · ]X), and
non-stuttering restriction (〈· · · 〉X) are all unary.

The notion of operators can be extended to nullary operators with arity
0, which are the primitive expressions of which temporal expressions are con-
structed, i.e., concrete state predicates and actions, and symbols representing
temporal expressions, actions, or state predicates.

3.4.3 Duality of Operators

Two k-ary operators Φ and Ψ are dual to each other if

Φ(E1, . . . , Ek) ⇔ ¬Ψ(¬E1, . . . ,¬Ek) . (3.53)

In particular,

• the dual of a nullary operator is its logical complement, expressed as nega-
tion,

• negation (¬) is self-dual,
• conjunction (∧) and disjunction (∨) are each other’s duals,
• existential and universal quantification of rigid variables (∃m : , ∀m : ) are

each other’s duals,
• box (�) and diamond (�) are each other’s duals, and
• stuttering closure ([· · · ]X) and non-stuttering restriction (〈· · · 〉X) are each

other’s duals.

For any temporal expression E in which all rigid variables are either exis-
tentially or universally quantified, let E† denote the expression obtained from
E by replacing each operator – including the nullary ones – by its dual. The
generic duality law

E ⇔ ¬E† (3.54)

then holds as a generalization of (3.53). Verification of this is left as an exercise
to the reader (Exercise 3.4.5). De Morgan’s law is a non-temporal instance
of (3.54).

3.4.4 Duality Principle

The duality law leads to the following duality principle, which for any law
gives another law:

• For each law
E ⇒ F , respectively E ⇔ F
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there is a dual law14

F† ⇒ E† , respectively E† ⇔ F† .

Verification of this is left as an exercise to the reader (Exercise 3.4.5).
As an example of applying this principle, we get the law

�(E ∨ F) ⇒ �E ∨ �F (3.55)

as the dual of (3.50) on p. 79.

3.4.5 Derived Operators for Temporal Relations

In requirements specifications one often has situations where causal or at least
temporal relations exist between the states or steps that appear in behaviors.
For instance, a state that satisfies P may be required to lead to a state that
satisfies Q, or an 〈A〉 step may be required to lead to a 〈B〉 step. Operator
symbol ‘�’ (read: leads to) will be used in expressing such relations.

More generally, for any temporal expressions E and F we define

E � F
∆
= �(E ⇒ �F) . (3.56)

If operand E in E � F is of the form 〈A〉, then this definition does not
seem to satisfy the syntactic constraints of TLA. However, since

�(E ⇒ �F) ⇔ �(�E ⇒ �F) (3.57)

is identically true, expressions of the form 〈A〉 � F can also be used (see
Exercise 3.4.16).

Syntactically we use � as a less binding operator than ∧ and ∨, but more
binding than ⇒ and ⇔.

Obviously, � is both reflexive and transitive. That is, the following are
tautologies:

E � E , (3.58)
(E � F) ∧ (F � G) ⇒ E � G . (3.59)

For two state predicates P and Q we obviously have the law

P � Q ⇔ P ∧ ¬Q � 〈Q ′〉 . (3.60)

Combining ‘leads to’ with the stability operator (stable unless) gives the
stronger but often useful until predicate (stable until), which expresses that
a given state predicate will not be turned false except by a given action, and
that this will eventually take place:

stable P until 〈A〉 ∆
= (stable P unless A) ∧ (P � 〈A〉) . (3.61)

14Obviously, systematic negation of symbols for arbitrary temporal expressions,
state predicates, and actions can be omitted from

� † and � †.
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3.4.6 Combined Temporal Operators

Combining operators � and � gives us ��, which stands for infinitely often,
and ��, which stands for eventually always. As an instance of the duality
law (3.54) on p. 80 we have

��E ⇔ ¬��¬E (3.62)

for them.
The following useful laws also hold for them:

��E ⇒ ��E , (3.63)
���E ⇔ ��E , (3.64)

��E ∧ ��F ⇔ ��(E ∧ F) . (3.65)

Of course, the duals for (3.64) and (3.65) also exist; law (3.63) is self-dual.
Properties of the form ��P (eventually always P) require that P is at least

eventually stable. The following laws can be used to deduce such properties:

�P ∧ stable P ⇒ ��P , (3.66)
��P ∧ � stable P ⇔ ��P . (3.67)

The relationship between �� and � is established by laws

��E ⇔ T � E , (3.68)
��E ⇔ ¬E � E . (3.69)

3.4.7 Stuttering Steps and Fairness

An action system may lead to a situation where the execution of an action
corresponds to a stuttering step. This is the case when the guard is true but
the body makes no changes in variables. To discuss such situations, let A be
an action that deals with variables in X, and for which A ∧ StutterX is not
identically false, i.e., it is possible for an A step to leave all variables in X

unchanged.
The question now is whether an X-stuttering step that satisfies EnabledA

should be considered an ‘execution’ of A or not. This is a relevant question,
since the execution or non-execution of an action makes a difference for the
satisfaction of possible fairness requirements for it.

There are two points to be noticed in answering this question. On one hand,
the presence or absence of stuttering steps should not affect the satisfaction
of any TLA expression. On the other hand, in the execution of an action
system it is reasonable to think of evaluating a guard without executing the
associated action – this is, in fact, needed for fairness considerations – but it
does not sound reasonable to check in a similar manner whether an execution
of the body could lead to a stuttering step.

These points are taken into account by adopting the following interpreta-
tion:
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• An occurrence of a state satisfying Enabled (A ∧ StutterX) will always
be counted as an ‘execution’ of A.

3.4.8 Stutter-excluding Part of Actions

In order to formalize fairness properties in TLA, the above interpretation
of stuttering executions means that we need to be able to talk separately
about non-stuttering and stuttering A steps. For this purpose we define the
stuttering part A0

X of action A as15

A0
X

∆
= A ∧ StutterX . (3.70)

This allows partitioning of action A into three mutually exclusive cases,

A ⇔ A0 ∨ (A ∧ ¬Enabled A0) ∨ (〈A〉 ∧ Enabled A0) . (3.71)

The second part, the stutter-excluding part of A, is enabled only when the
stuttering part is not, and will be denoted by A+,

A+ ∆
= A ∧ ¬Enabled A0 . (3.72)

Obviously, A+ implies 〈A〉,
A+ ⇒ 〈A〉 , (3.73)

but may be properly stronger than it, since the enabling conditions of 〈A〉
and A0 need not exclude each other (see Exercise 3.4.7).

3.4.9 Weak Fairness

Fairness conditions can be expressed using the combined operators �� and
��.

An operational definition of weak fairness with respect to an action A,
WF(A), is that A cannot be continually enabled without being executed. Since
enabling of A0 will also be counted as an execution of A, as was discussed
above, we only need to pay attention to enabling of A+.

Formalizing this in TLA gives us a definition of weak fairness,

WF(A)
∆
= ��Enabled A+ ⇒ ��〈A+〉 , (3.74)

which states that, if A+ is eventually always enabled in a behavior, then
the behavior must have infinitely many A+ steps. This condition can also be
formulated as

WF(A) ⇔ Enabled A+ � 〈A+ ∨ ¬Enabled ′ A+〉 . (3.75)

The following law is useful when dealing with actions with strengthened
enabling conditions:

WF(A) ⇒ WF(P ∧ A) . (3.76)
15Assuming that � consists of all those variables that we are interested in, sub-

scripts � can again be omitted.
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3.4.10 Strong Fairness

Correspondingly, formalization of strong fairness gives the following definition:

SF(A)
∆
= ��Enabled A+ ⇒ ��〈A+〉 ∨ ��Enabled A0 . (3.77)

Compared to (3.74), we now need the disjunct ��Enabled A0 on the right-
hand side of the implication, since this possibility is in this case not excluded
by the condition on the left.

The following laws hold for strong fairness:

SF(A) ⇒ WF(A) , (3.78)
SF(A) ∧ SF(B) ⇒ SF(A ∨ B) . (3.79)

In the counterpart of law (3.76) we have to make an additional assumption
about eventual stability of the added strengthening condition:

SF(A) ∧ �(stable P unless 〈A〉) ⇒ SF(P ∧ A) . (3.80)

Review Questions

Question 3.4.1 What is meant by the duality law and the duality principle?

Question 3.4.2 What makes it desirable to be able to talk about stuttering
executions of actions?

Exercises

Exercise 3.4.1 Are properties of the form �P or P � Q always liveness
properties?

Exercise 3.4.2 Give an example of two liveness properties E and F for which
the conjunction E ∧ F is identically false.

Exercise 3.4.3 There are 24 = 16 binary Boolean operators. Given the ‘mul-
tiplication table’ for any of them, how do you get the table for its dual? Which
of them are self-dual?

Exercise 3.4.4 Show that any law of the form E ⇒ ¬E† or E ⇔ ¬E† is
effectively self-dual.

Exercise 3.4.5 Show that the duality law and principle in Sects. 3.4.3 (p. 80)
and 3.4.4 (p. 80) are valid.
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Exercise 3.4.6 Give duals for the temporal laws given in Sect. 3.3 (p. 69).
Use the definition of � to prove directly that the dual of (3.19) on p. 70 follows
from it.

Exercise 3.4.7 In which situations is it possible for A+ and 〈A〉 to be dif-
ferent?

Exercise 3.4.8 Express in TLA the following property related to the gas-
burner example of Chap. 2:

• If req e is repeatedly true in state Idle, then state Starting will eventually
be entered.

Does this property hold for all legal executions of the action system?

Exercise 3.4.9 Show that, if E ⇒ F is a law for some temporal expressions
E and F, then so is �E ⇒ �F. Give a counterexample to demonstrate that the
converse is not true.

Exercise 3.4.10 Explain the difference between P � Q and P ⇒ �Q. Does
one of them imply the other?

Exercise 3.4.11 Show that the laws in Sect. 3.4.6 (p. 82) hold.

Exercise 3.4.12 Can the number of consecutive box and diamond operators
always be reduced to two?

Exercise 3.4.13 Deduce law (3.50) on p. 79, or its dual (3.55) on p. 81,
without resorting to its semantic interpretation.

Exercise 3.4.14 Deduce law (3.66) on p. 82 from other laws. Hint: utilize
laws (3.50) on p. 79 and (3.42) on p. 75.

Exercise 3.4.15 Deduce law (3.67) on p. 82 from other laws. Hint: utilize
laws (3.50) on p. 79 and (3.66) on p. 82.

Exercise 3.4.16 Deduce law (3.57) on p. 81 from other laws. Hint: utilize
law (3.55) on p. 81.

Exercise 3.4.17 If A ⇒ B is identically true, does either WF(A) ⇒ WF(B)
or WF(B) ⇒ WF(A) hold?

Exercise 3.4.18 Show that condition (3.75) on p. 83 is equivalent to the one
in the definition (3.74) of weak fairness (p. 83).



86 3 Formal Properties of Behaviors

Exercise 3.4.19 Show that the conditions for weak and strong fairness could
also be formulated in the following more symmetric forms:

WF(A) ⇔ (��Enabled A ⇒ ��〈A〉 ∨ ��Enabled A0) ,

SF(A) ⇔ (��Enabled A ⇒ ��〈A〉 ∨ ��Enabled A0) .

Exercise 3.4.20 Verify laws (3.76), (3.79), and (3.80) on pp. 83–84.

3.5 TLA-based Specifications

TLA gives a formal basis for the specification of behavioral properties and for
rigorous reasoning on them. The relationship between TLA and operational
specifications in the action language will be analyzed in this section.

3.5.1 Behaviors and Executions

According to the terminology suggested in Sect. 1.2.3 (p. 10), when real sys-
tems are modeled as action systems, concrete computations in the former
correspond to abstract executions in the latter. Behaviors, on the other hand,
are abstractions of executions as state sequences. The relationship between
the associated levels of system modeling and specification is then as follows:

• TLA is a temporal logic for reasoning.
• The standard semantic interpretation of TLA is given in terms of behav-

iors, which means that TLA can be used to specify and reason on properties
of behaviors.

• Behaviors are abstractions of executions in action systems. Operational
modeling in terms of action systems therefore generates behaviors.

• Executions in action systems model computations in system implementa-
tions.

3.5.2 Operational Safety Specifications in TLA

Let X ⊆ Var be the set of state variables that are of interest to us in a
specification. By definition, all variables in Var have unique values in each
state s ∈ Σ, including those variables that are not in X. Ignoring variables in
Var\X, we use the words ‘state’ and ‘behavior’ in the following to denote such
(projections of) states and behaviors, where only variables in X are considered.

If P is a satisfiable state predicate and A is an action, each involving only
variables in X, TLA formula S,

S
∆
= P ∧ �[A]X , (3.81)

has a natural operational interpretation for producing arbitrary behaviors
that satisfy S:
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1. Start execution in an arbitrary state s0 that satisfies the initial condition
P.

2. Take a finite number (possibly zero) of X-stuttering steps.
3. If A is not enabled in the current state si, repeat X-stuttering indefinitely.
4. Otherwise, either repeat X-stuttering indefinitely, or enter state si+1 by

an arbitrary step (si, si+1) that satisfies A, and return to step 2.

Ignoring variables in Var \ X, this nondeterministic procedure generates
exactly those behaviors that satisfy S, since any such behavior can be gener-
ated by it. If some constraints are imposed on how the next execution step is
selected in step 4, the procedure still produces behaviors that satisfy S, but
not all of them. Obviously, if we are not interested in X-stuttering steps, step 2
can be omitted, and indefinite X-stuttering in steps 3 and 4 can be replaced
by termination.

Although this procedure can be considered as an operational execution
model for TLA formulas of the form (3.81), it relies on operations that need
not be effectively executable. More specifically, it assumes that

• one can generate an arbitrary initial state s0 that satisfies P,
• one can evaluate the enabling of A in an arbitrary state si, and
• if A is enabled in state si, one can generate an arbitrary step (si, si+1)

that satisfies A.

Even assuming that an arbitrary state can be effectively constructed, and
that the satisfaction of P and A can be effectively tested for arbitrary states,
it need not be possible to determine in a finite time whether A is enabled or
not. Still, the intuition provided by this operational model is important for
understanding the relationship between TLA and action systems.

Since (3.81) defines a pure safety property, expressions of this form give
safety specifications only. Conversely, one can claim that all operational spec-
ifications that specify only safety properties can be formalized as a TLA ex-
pressions of this form. Such a statement cannot, however, be proved, since it
compares an informal concept to a formal one.

3.5.3 Feasible Liveness Conditions

If S is a pure safety property, and L is a pure liveness property, then L is
said to be feasible for S if any finite prefix of a behavior satisfying S can be
extended into an infinite behavior that satisfies both S and L. In other words,
S ∧ L then differs from S only by the liveness properties imposed by L. This
can be expressed formally as

Cl(S ∧ L) ⇔ S .

As an example of a non-feasible liveness property, consider safety expres-
sion

S
∆
= x = 0 ∧ �[x ′ = x + 1 ∨ x ′ = x − 2]
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and the effect of conjoining liveness expression

L1
∆
= SF(x ′ = x − 1)

with it. Obviously, S does not allow any steps x ′ = x−1, since all steps either
increment x by 1 or decrement it by 2. However, since action x ′ = x − 1 is
always enabled, S ∧ L1, and hence also its closure, are identically false.

On the other hand, liveness expression

L2
∆
= SF(x = 0 ∧ x ′ = 1)

would require that, if x = 0 is true infinitely often, then step x = 0 ∧ x ′ = 1

is also taken infinitely often. Since such steps are never made impossible by
S, L2 is feasible for S.

More generally, let S be of the form (3.81), and let L be restricted to a
(strong or weak) fairness condition with respect to some action B, i.e., to have
the form SF(B) or WF(B). In this case, L is said to be strongly feasible for S

if S implies

�(Enabled B ⇒ Enabled(A ∧ B)) . (3.82)

In other words, strong feasibility of a fairness condition for B requires that,
if B is enabled in a state that is reachable under S, then a B step cannot be
excluded by S. In the above example, L1 was not strongly feasible for S, but
L2 was. It is easy to see that strong feasibility always implies feasibility.

For two liveness conditions L1 and L2 that are feasible for a safety prop-
erty S, the conjunction L1 ∧ L2 does not, in general, have this property (see
Exercise 3.5.1). However, if L1 and L2 are fairness conditions that are strongly
feasible for a safety property S of the form (3.81), then L1 ∧ L2 is feasible for
S. More generally, if L1, L2, . . . is a finite or countably infinite collection of
fairness conditions that are strongly feasible for a safety property S of the
form (3.81), then their conjunction L1 ∧ L2 ∧ . . . is feasible for S (see Exer-
cise 3.5.2).

3.5.4 Canonical TLA Expressions

Liveness properties can be added to a safety specification as (strong and weak)
fairness conditions that are strongly feasible for it.

Let S be an arbitrary safety specification of the form (3.81), and let {Bs
i}

and {Bw
i }, i = 1, . . . , be finite or countably infinite sets of actions for which

the strong feasibility condition (3.82) is satisfied for S. Defining

Fs ∆
=

∧

i

SF(Bs
i) ,

Fw ∆
=

∧

i

WF(Bw
i ) ,

F
∆
= Fs ∧ Fw, (3.83)
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the TLA expression

T
∆
= S ∧ F⇔ P ∧ �[A] ∧ Fs ∧ Fw (3.84)

is said to be in the canonical form.16

More generally, a canonical TLA formula may also contain quantified state
variables, and can therefore have the form

∃∃∃x : (P ∧ �[A] ∧ F) ,

where x denotes a collection of quantified state variables in X.
The operational interpretation discussed in Sect. 3.5.2 (p. 86) can be gen-

eralized to all canonical TLA expressions with a satisfiable initial condition P.
Step 4 then needs to be modified so that all fairness requirements will also be
satisfied. The feasibility of F for S guarantees that this can be done so that ar-
bitrary finite prefixes of behaviors satisfying S are allowed (see Exercise 3.5.2).
Quantification of state variables has no importance for the operational model.

3.5.5 Action Systems and TLA

Canonical formulas of the form (3.84) and their operational interpretation
are very similar to action systems and their execution model. Despite this
similarity, they are conceptually different and serve for different purposes.
The latter will be used as a language for constructing operational models;
the former will be used as a vehicle for expressing their logical properties and
for reasoning on them. Some of the consequences of this difference will be
discussed in the subsequent subsections.

Thanks to the similarity, the action language can be understood as a bridge
between implementation-oriented engineering of reactive systems and their
formal analysis (see Fig. 3.7). As a language with an interpretation in TLA it
serves as a basis for common understanding between those who specify and
design reactive systems with a constructive engineering view, and those who
take a more formal analytical view to prove that the designs satisfy their
critical requirements. Some combination of both views is always needed in a
serious review of specifications. Mixing the two views makes it possible, for
instance, to talk about executions of a TLA formula in the canonical form,
instead of behaviors that are satisfied by it.

As for the viewpoint of logical analysis and proofs, TLA can be under-
stood as a logical ‘machine language’ of action systems, into which translation
is needed. A conceptually simple mapping to TLA is therefore essential. On

16For mathematical completeness, the initial condition � is allowed to be unsat-
isfiable, even though no operational interpretation then exists. The possibility for
an infinite number of fairness conditions will be needed in Chap. 7. It is therefore
important that � is feasible for � also in that case.
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Specification in
action language

Formal analysis
in TLA

Design and
implementation

Constructive engineering view

Formal analytical view

Fig. 3.7. Action language as a bridge between specification logic and implementa-
tion languages

the other hand, a designer who uses the action language like a programming
language needs facilities that have proved useful in programming languages,
and which also provide support for managing the complexity of large specifi-
cations. Such extensions of the action language will be discussed in Part III
of this book.

In principle, translation of action systems into TLA is straightforward:

• The variables that are used in an action system are taken as the set X

in (3.84).
• Requirements for the initial state of an action system are taken as P

in (3.84).
• Each action Ai, i = 1, . . . , n, in an action system is transformed (see below)

into a corresponding TLA action Ai, and the expression A1 ∨ · · ·∨ An is
taken as A in (3.84).17

• Each strong (weak) fairness requirement for an action Ai is translated di-
rectly to the corresponding fairness condition SF(Ai) (WF(Ai)) in (3.84).

In the gas-burner example of Chap. 2, X, P, A, Fs, and Fw would be defined
as

X
∆
= {req e, flam e, flow e, ign e, req s, flam s, flow s, ign s} ,

P
∆
= req e = flam e = flow e = ign e

= req s = flam s = flow s = ign s = false ,

A
∆
= Req on e ∨ Req off e ∨ Flame on e ∨ Flame off e

∨ Req on s ∨ Req off s ∨ Flame on s ∨ Flame off s

∨ Start s ∨ Ign off s ∨ Stop s ∨ Close s ,

17Same names but different fonts will be used in the following for corresponding
actions in an action system and in TLA.
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Fs ∆
= SF(Req on s) ∧ SF(Req off s) ∧ SF(Flame on s) ∧ SF(Flame off s)

∧ SF(Start s) ∧ SF(Ign off s) ∧ SF(Stop s) ∧ SF(Close s) ,

Fw ∆
= T ,

where action Req on s, for instance, is

Req on s
∆
= req e = true

∧ req s �= true

∧ req e ′ = req e

∧ flam e ′ = flam e

∧ flow e ′ = flow e

∧ ign e ′ = ign e

∧ req s ′ = true

∧ flam s ′ = flam s

∧ flow s ′ = flow s

∧ ign s ′ = ign s .

In general, in transforming an action language action Ai into a correspond-
ing TLA action Ai, conjuncts in both the guard and the body are conjoined.
However, whereas it is a default in the action language for a variable x ∈ X to
stay unchanged if no new value is assigned to it, this has to be made explicit
in TLA by an additional conjunct x ′ = x. In other respects the mapping into
TLA actions is straightforward.

From the viewpoint of TLA, several conventions in the action language
can be seen as simplifications that have been adopted in order to make the
execution of action systems more natural:

• The guards of actions are given as explicit expressions, which simplifies
the evaluation of enabling conditions Enabled Ai.

• Action bodies are given as multiple assignments, which simplifies the idea
of their execution.

• Fairness requirements are given only with respect to those actions that are
given as actions to be executed.

With parameterization of actions, to be introduced in Chap. 5, the first two
of these simplifications do not constrain the expressiveness of the language.
Discussing the effect of the third simplification will be left as an exercise to
the reader (Exercise 3.5.3).

3.5.6 Erroneous Action Systems

An important difference between models given as action systems on one hand,
and specifications given as canonical TLA expressions on the other hand,
concerns ‘run-time errors’.
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An action system may involve expressions that are undefined in some
situations, in which case an execution may detect an error in the model. We
then say that the action system is erroneous. In TLA, on the other hand, all
state functions and enabling conditions have, by definition, unique values in all
states, which means that no ‘run-time errors’ may occur in their operational
interpretation.

· · · � · · ·
undefined guard

� �

� � ?

· · · � ? · · ·

� �

undefined body of
� �

Fig. 3.8. Illustration of erroneous executions and their exclusion

The problems with erroneous action systems are illustrated in Fig. 3.8. In
the upper part of the figure, the guard gi of action Ai is undefined in state s,
which leaves the enabling of Ai also undefined. In the lower part, the guard
gi is true and action Ai is selected for execution, but its effects are undefined.
Still, in TLA an action Ai and its enabling condition Enabled Ai are assumed
always to be well defined. Therefore, the translation of action systems to TLA
would not seem to be well defined if such situations can arise.

As suggested in Sect. 3.1.3 (p.59), we can assume that all expressions al-
ways have some unique values. This means that the above mapping of action
systems always leads to a TLA formula, but, in the presence of ‘undefined’
expressions, we may be unable to analyze this expression for the properties
that we are interested in. As a solution it was suggested to ensure that expres-
sions never need to be evaluated in situations where their values cannot be
determined. Intuitively, we then need to impose an invariant that guarantees
that such states are not reachable where ‘undefined’ values would be needed.

This idea can be made precise by associating two state predicates with
each action Ai in the action system: Pi that ensures that the guard gi of
action Ai can be evaluated, and Qi that ensures that all expressions in the
body of Ai can be evaluated whenever Pi and the guard gi are true. If the TLA
actions Ai that are obtained by the above translation procedure are replaced
by Pi ∧ Qi ∧ Ai, we get a canonical TLA expression S where an action is
always false in situations where its enabling or effects would be undefined
without the additional conjuncts Pi and Qi.

With these notations we get the proof obligation that the well-defined
TLA expression S implies the state invariant
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∧

i

�(Pi ∧ (gi ⇒ Qi)) . (3.85)

Obviously, when this non-erroneousness condition holds, predicates Pi and Qi

are superfluous in the actions of S and can therefore be omitted.
Further reasons for an action system to be erroneous will follow from

the constructions to be introduced in Chap. 5, and associated further proof
obligations will be discussed there.

We have left it unspecified, by purpose, when the value of an expression
cannot be uniquely evaluated. The reason for this is that this also depends
on the evaluation strategy that is used for expressions – for instance, whether
one can be sure that the evaluation of state predicate 1/x = 1/x gives value
T also when x = 0 – and no assumptions on an evaluation strategy seem
universally acceptable. Therefore, for the correctness of an implementation it
is always crucial to check that the assumed predicates Pi and Qi are, in fact,
sufficient to guarantee error-free evaluation of all action guards and bodies in
that implementation.

3.5.7 Action Identity

Another difference between logic and an operational view of executions is
whether the identities of actions have any significance.

The actions in an action system constitute a set {A1, . . . , An}, where each
action has a unique name, and fairness requirements can be associated only
with these named actions. Even when the effects of an execution step may
have been caused by several alternative actions, it is reasonable to think that
exactly one of them has been executed. In some sense this resembles event-
based approaches, where execution steps are labeled by event names.

In contrast, no notion of individually identifiable actions is associated with
a TLA expression in the canonical form (3.84) on p. 89. It is just a TLA
expression, even though the step invariant [A] in it may have been constructed
from actions in the action language as a disjunction [A1 ∨ · · · ∨ An]. The
identities of actions Ai in the action system have been lost in this mapping,
and expression (3.84) could be replaced by any other TLA expression that
is equivalent to it. Also, if Ai and Aj are non-disjoint, i.e., Ai ∧ Aj is not
identically false, it makes no sense in TLA to try to distinguish whether a
step that satisfies Ai ∧ Aj is an ‘execution’ of Ai or Aj.

As far as those behaviors are concerned that correspond to fair executions,
it does not matter, however, whether steps are considered as executions of
individually identified actions or not (see Exercise 3.5.4).

Although the structure that is imposed by the set of actions in an action
system is irrelevant for its meaning in TLA, it is important for a design method
that is based on action systems. Therefore, when discussing canonical TLA
specifications of the form (3.84), we will always assume a set of individual
TLA actions {A1, . . . , An} such that
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A ⇔ A1 ∨ · · · ∨ An .

For simplicity, we will denote this set by the same symbol, i.e.,

A = {A1, . . . , An} ,

since it will always be clear from context whether A denotes a disjunction or
a set of TLA actions.

Similarly, notations Fs and Fw will be used both for the TLA expressions
in (3.83) on p. 88 and for the associated sets of (strongly and weakly) fair
actions,

Fs = {Bs
1, . . . } ,

Fw = {Bw
1 , . . . } .

3.5.8 Specification vs. Modeling

Some explanation is now given about a few terms that have no precisely
defined meanings in the literature.

The word executable specifications is commonly used about specification
models that can be run on a computer. Here we use the attribute ‘operational’
in a somewhat more general meaning. An operational specification is assumed
to be based on an abstract execution model, but this model may utilize pos-
sibilities that cannot be effectively translated into executable or simulatable
code, or are outright impossible to implement. In canonical TLA expressions
and action systems such possibilities are offered by nondeterminism and by
the generality of state predicates and actions.

In fact, it is easy to see that, unless some constraints are imposed on state
predicates, the power of action-system specifications goes beyond the limits of
effective computability. Consider, for instance, an algorithmically computable
function f : N → N for which the set {f(0), f(1), . . . } is undecidable. That is,
no effective algorithm is possible that would determine for an arbitrary x ∈ N

whether there exists an n ∈ N such that x = f(n). Still, a solution to this
undecidable problem would be needed to evaluate the predicate

∃n ∈ N : x = f(n) ,

which could appear in the guard of an action.
For the proponents of executable specifications – or any specifications for

which automatic implementation can be provided – this is, of course, far too
general. There are, however, good reasons to argue that the expressive power
of a specification language is too limited if it cannot also describe unimple-
mentable systems. This is analogous to considering an algorithmic language
too limited if its expressive power is restricted to effective computations that
are guaranteed to terminate.
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In providing executable models, executable specifications describe how one
could implement the desired system. In the other end of the spectrum are
property-oriented specifications, which can be said to describe only what to im-
plement. Whereas executable specifications usually means overspecification in
the sense that implementations are restricted more severely than what would
be necessary, property-oriented specifications easily lead to underspecification,
which also allows behaviors that do not satisfy the intended requirements, or
to logically contradictory specifications that are impossible to satisfy.

Operational specifications provide a compromise between the two ends.
On one hand, they are not property-oriented but model-oriented, in the sense
that they provide operational models. These models are based on an abstract
notion of executions and are therefore close to software engineers’ intuitive un-
derstanding of programs. On the other hand, they allow an essentially higher
level of abstraction than what is possible with outright executability. Logically
impossible models can only arise when the initial condition is unsatisfiable.

As model-oriented specifications, action systems make no distinction be-
tween variables that are essential in the specification and those that have an
auxiliary role only, or between variables and actions that model the system
to be implemented and those that model the environment. Although we will
give these distinctions separately whenever they are important for us, one can
argue that the action language is not a specification language but a modeling
language. The line between operational specification and operational modeling
is, however, fine and often debatable.

3.5.9 Non-canonical Requirements

Canonical TLA expressions are only the ‘tip of the iceberg’ of all TLA expres-
sions (see Fig. 1.6, p. 15). Although this ‘tip’ corresponds to those expressions
that have a natural operational interpretation, it is mathematically simpler to
have access to the whole iceberg. Therefore, it is an advantage to have the full
power of TLA available in expressing properties of behaviors and in proving
them.

In requirements specification it is often desirable to express properties in a
non-operational form. For instance, canonical TLA expressions do not allow
direct expression of simple state invariants �P, or simple ‘leads to’, ‘unless’,
and ‘until’ properties, which are quite useful in the formulation of require-
ments. The additional freedom given by such property-oriented use of TLA
leads, however, to the same dangers as any other kinds of property-oriented
specifications.

Of course, it is possible to give also mixed specifications, where an op-
erational basis is combined with property-oriented formulation of additional
requirements. For instance, if one does not want to construct a detailed enough
operational model of the environment, one can give a ‘liberal’ operational ap-
proximation of it, and conjoin it with additional non-canonical safety and/or
liveness requirements. For instance, the restrictions of the action language in
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expressing arbitrary fairness properties can be compensated in this manner
by giving additional liveness assumptions as TLA formulas.

3.5.10 Example: Mutual Exclusion

As an example of non-canonical requirements, consider possible requirements
for an operating system kernel to implement mutual exclusion for n processes.
The purpose is to protect the n processes from interfering with each other,
by allowing at most one of them to be in its ‘critical region’ at any time.

Let the communication between the n processes and the kernel take place
through binary variables requesti and granti, i = 1, . . . , n, of which only
process i is allowed to change the value of requesti, and only the kernel is
allowed to change the value of any granti.

These variables are assumed to be used as follows:

• In the initial state we assume that requesti = granti = 0 for all i.
• When process i becomes ready to enter its critical region, it sets requesti

to 1.
• When the kernel gives process i permission to enter its critical region, it

sets granti to 1.
• When process i exits its critical region, it resets requesti to 0.
• When the kernel notices that process i has exited its critical region, it

acknowledges this by resetting granti to 0.

Safety Requirements for the Kernel

In analyzing safety requirements in this example, we first notice that the
values of granti must always remain within the specified range, and at most
one of them can be 1 at a time. This gives the following state invariants:

�(granti ∈ {0, 1}) , i = 1, . . . , n ,

�(

n∑
i=1

granti ≤ 1) .

As for state changes, it is reasonable to require that permission to enter
a critical region is never given to a process that has not requested it. Corre-
spondingly, granti should not be reset before process i has exited its critical
region. This gives us requirement

steady granti unless 〈grant ′i = requesti〉 , i = 1, . . . , n .

Safety Requirements for the Processes

Also, the values of requesti must always remain within the specified range,
which gives us state invariants
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�(requesti ∈ {0, 1}) , i = 1, . . . , n .

In its operation, the kernel needs to rely on the processes to behave in
a reasonable manner. Problems could arise, for instance, if a process would
withdraw its request before it has been granted permission for an entry. Sim-
ilarly, a process should not request another entry until the previous exit has
been acknowledged. This leads to requirement

steady requesti unless 〈request ′i = 1 − granti〉 , i = 1, . . . , n .

Liveness Requirements

As for liveness requirements for the kernel, it seems reasonable to require that,
whenever a process is willing to enter its critical region, it will eventually be
granted permission to do this. Similarly, an exit from a critical region should
always eventually be acknowledged. This gives us

requesti �= granti � 〈grant ′i = requesti〉 , i = 1, . . . , n .

However, the former of these requirements cannot be satisfied if some pro-
cess remains indefinitely in its critical region. Therefore, we also need liveness
requirements for the n processes:

requesti = granti = 1 � 〈request ′i = 0〉 , i = 1, . . . , n .

3.5.11 Enforcing Causal Relations

By causality we understand that some steps are in some sense ‘caused’ by
the earlier history in behaviors. As an example, let A and B be two disjoint
and non-stuttering actions, and consider the property φ that A and B steps
strictly alternate, so that each B step is ‘caused’ by a preceding A step, and
no intervening A steps can appear.

Obviously, φ holds if 〈A〉 � 〈B〉 and, in addition, the specification has
been constructed so that there is a state predicate P that is initially false, and
is turned on and off by A and B as follows:

�[A ⇔ ¬P ∧ P ′] ∧ �[B ⇔ P ∧ ¬P ′] .

In designing a specification one can explicitly construct such a state predi-
cate P, for instance by introducing an auxiliary Boolean variable b, initialized
as true, and using its value to control the enabling of actions A and B so that

A ⇒ b = true ∧ b ′ = false ,

B ⇒ b = false ∧ b ′ = true ,

�[b ′ �= b ⇒ A ∨ B] .

In general, auxiliary variables provide a powerful but programming-like
way to keep track of the history, and to enforce causal relations between the
steps that are taken.
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3.5.12 Possibility Properties

As a linear-time logic, TLA cannot directly express requirements of the form
‘for each initial prefix of a behavior it is always possible that action B will
be executed in the future’. Notice that this does not imply that B would
need to be executed at all. The situation is illustrated in Fig. 3.9, where the
behavior 〈s0, s1, . . . 〉 does not contain B steps, but there is infinitely often
a possibility for another branch of execution where B could appear. In fact,
the given requirement implies that there would always be a possibility for an
infinite number of B steps.

� �· · · · · · � � � � · · ·

· · · · · ·

�

· · · · · ·

�

Fig. 3.9. Illustration of a possibility property

Properties of this kind are called possibility properties. Obviously, possi-
bility properties are not properties of individual behaviors, but of trees of
possible behaviors.

Since we are usually interested only in what really happens in behaviors,
possibility properties are less important for us. In Chap. 10 on real-time spec-
ifications a special need for them will, however, arise.

If the safety part of a specification is S,

S ⇔ P ∧ �[A] ,

the above possibility property holds if one can find a stronger step invariant
�[A1], i.e., one for which A1 ⇒ A, and a conjunction of fairness formulas F,
for which S implies

��[A1] ∧ F ⇒ ��〈B〉 . (3.86)

We will not prove this, but the intuition behind it can be explained as
follows. If it is always possible to execute B in the future, it must be possible
to ‘guide’ any execution after any arbitrary initial part into a direction where
infinitely many B steps will appear. Such ‘guidance’ can be given by eventually
restricting actions to A1 and by applying suitable fairness assumptions F.

Verifying a possibility property with the aid of (3.86) needs, of course, the
invention of appropriate A1 and F.
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3.5.13 Parameterization

Existentially quantified rigid variables can be used in state functions and also
in actions. Their use in actions gives the possibility for parameterized actions,
which will be incorporated in the action language in Chap. 5.

In addition, rigid variables can be used to construct parameterized spec-
ifications. Parameterized specifications have free (non-quantified) rigid vari-
ables, which are assumed to have some fixed but unknown values in all state
functions and actions. Being rigid they are not part of the state, and cannot
appear primed in actions. In programming terminology they would be called
‘constants’.

Review Questions

Question 3.5.1 When is a liveness requirement feasible for a safety specifi-
cation?

Question 3.5.2 What is meant by strong feasibility, and why are strongly
feasible liveness requirements useful in specifications?

Question 3.5.3 In which respects are canonical TLA expressions more gen-
eral than TLA expressions resulting from action systems?

Question 3.5.4 Discuss how an operational view of action systems may dif-
fer from a logical view of the corresponding canonical TLA expressions.

Question 3.5.5 What is meant by erroneous action systems, and why does
a similar phenomenon not arise in canonical TLA formulas?

Question 3.5.6 Why do we say that canonical TLA expressions are opera-
tional but not executable?

Question 3.5.7 What is the contrast between property-oriented and model-
oriented specifications?

Question 3.5.8 What is understood by overspecification and underspecifi-
cation?

Question 3.5.9 What is understood by possibility properties, and why are
they not directly expressible in TLA?
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Exercises

Exercise 3.5.1 Give an example of a situation where liveness properties L1

and L2 are feasible for a safety property S, but their conjunction L1 ∧ L2 is
not. Hint: see Exercise 3.4.2 on p. 84.

Exercise 3.5.2 Let S be a safety property of the form (3.81) on p. 86, and
let B1, B2, . . . be a countably infinite collection of actions such that, for each
i, fairness with respect to Bi is strongly feasible for S. Show that any finite
prefix of a behavior that satisfies S can be completed into an infinite behavior
that satisfies S∧SF(B1)∧SF(B2)∧ · · · . Hint: introduce counters that indicate
for how long each action Bi has not been executed, and use these counters in
selecting the next action to be executed. Since an infinite number of counters
cannot be maintained, increase gradually the number of actions considered.

Exercise 3.5.3 Consider the modification of an action system to impose an
arbitrary strongly feasible fairness requirement.

Exercise 3.5.4 Show that a nondeterministic execution model that achieves
fairness by treating each step as an execution of a specific action Ai does not
exclude any behaviors that satisfy the TLA expression in question.

Exercise 3.5.5 Show that the requirements given in Sect. 3.5.10 (p. 96)
imply that variables requesti and granti cannot be modified in the same
action.

Exercise 3.5.6 Show that the requirements given in Sect. 3.5.10 (p. 96)
imply the following mixed properties:

stable requesti �= granti until 〈grant ′i = requesti〉 , i = 1, . . . , n ,

stable requesti = granti = 1 until 〈request ′i = 0〉 , i = 1, . . . , n .

Exercise 3.5.7 Construct an action system for the mutual exclusion exam-
ple in Sect. 3.5.10 (p. 96). Show that the corresponding TLA formula implies
the safety and liveness properties formulated there.

Exercise 3.5.8 Impose a first-come-first-serve policy on the specification
constructed in Exercise 3.5.7.

Exercise 3.5.9 Discuss how the specification constructed in Exercise 3.5.7
implements the required causality relations between actions.
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Proving Behavioral Properties

The design method to be discussed in this book is intended to support ‘cor-
rectness by design’. Still, no matter how carefully specification models are con-
structed and reviewed, design errors do occur, and some reasoning is always
needed in order to be convinced of the satisfaction of the required properties.
Depending on the application and the criticality of the crucial properties of a
system, different degrees of formality can be used. In addition to informal rea-
soning with mathematical argumentation (as is done in the examples of this
book), complemented in various ways by testing and debugging of designs, a
specification formalism should also support formal proof techniques that are
mechanizable.

For this purpose we discuss in this chapter how logical deductions in TLA
can be carried out in detail, although this is not essential for understanding
the rest of this book. The chapter should not be read as a formal treatise of
logic, since its viewpoint is not that of logics. Instead, its aim is to give a
software designer a basis for understanding the arguments that can be used
in proving behavioral properties. The reader is warned, however, that even
‘obvious’ properties may lead to long and complicated proofs, when carried
out in all detail. Fortunately, less detailed proofs in English – ultimately based
on essentially the same kinds of arguments – are perfectly adequate for most
practical purposes.

A large collection of proof rules will be given, which are useful for detailed
manual proofs. No attention is paid to their redundancy or mathematical
elegance. Since quantification of state variables in TLA is only of secondary
importance for us, it will be ignored.

The structure of the chapter is as follows:

• Section 4.1 gives a brief introduction to proof systems, and how proofs in
TLA are based on non-temporal proofs for state predicates and actions.

• Section 4.2 discusses proof rules for invariants and other safety properties.
• Section 4.3 gives proof rules for liveness properties, for which fairness as-

sumptions are essential.
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4.1 Introduction

We start by briefly examining the role of formal proofs, and explaining the
non-temporal basis of temporal proofs.

4.1.1 Logical Proofs in System Design

When TLA is used, the situation where proofs are of concern is typically as
follows: we have two concrete TLA expressions E and F, and we need to prove
that every behavior satisfying E does also satisfy F. Obviously, this is the case
when E ⇒ F is a tautology.

For instance, when E is an operational specification, given as a canonical
TLA expression, and F is a required property of the system, then the tautology
E ⇒ F shows that this property does indeed hold for the specification. The
situation is the same when F is a specification and E is a TLA description
of a proposed implementation. Then the tautology E ⇒ F shows that (the
description of) the implementation satisfies the specification.

More generally, the specification and design of a system may proceed in
incremental steps, where each step corresponds to refining a TLA expression
Ei into Ei+1, with the correctness criterion Ei+1 ⇒ Ei. Similarly to programs,
complex specifications cannot be given in one step. Therefore, this process
may involve steps where Ei is an incomplete specification in which some of
the required properties have not yet been addressed, and Ei+1 is a slightly
more refined version of it. On the other hand, Ei+1 might also describe an
operational model with some more detailed design decisions than those incor-
porated in Ei.

Ultimately, reliable reasoning on reactive systems can only be achieved by
using computer assistance in the generation and checking of proofs. When
the required degree of confidence in system correctness is very high, as it
is in life-critical applications, disciplined informal approaches and extensive
testing are no substitute for formal machine-checked proofs. All of these are
then important and they all complement each other.

Unfortunately, the current state-of-the-art and the available tools are not
yet sufficiently ripe for using formal methods as widely as would be desirable.
However, even when reactive systems are designed with a modest degree of
formality, the designer should be able to think in terms of the formal argu-
ments that would be crucial in formal proofs. Although proofs are then not
expected to be carried out in detail, it is the same kind of arguments that the
designer should use in convincing himself and the rest of the design review
team of the correctness of a design.

4.1.2 Logical Deductions

When E ⇒ F is proved to be a tautology, we say that F is logically deduced
from E.
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In the semantic interpretation of temporal formulas, an expression of the
form E ⇒ F can be proved to be a tautology by showing that every behavior
that satisfies E also satisfies F. Reasoning in terms of behaviors is, however,
complicated and error-prone. Therefore, it is preferable to use an abstract
logical calculus for deductions.

Axioms in a logical system are formulas that are known to be identically
true, i.e., can be deduced from any assumptions. For our purposes we can
take as axioms all the laws given in Sects. 3.3 and 3.4. For instance, (3.48) on
p. 79, which is a law by definition, gives an axiom

�E ⇔ ¬�¬E ,

where E stands for an arbitrary temporal predicate.
For deductions, a logical system has deduction rules or proof rules, by

which true formulas can be deduced from what is already known or assumed
to be true. In fact, every law of the form

E1 ∧ · · · ∧ Ek ⇒ E (4.1)

gives a rule by which one can deduce E, if all Ei, i = 1, . . . , k, are either
axioms or assumptions, or have already been deduced from these. Such a rule
can be written in the form given in Table 4.1, where the premises Ei are
written above the horizontal line, and the conclusion E is written below it.
This form is obviously more convenient than writing out laws in the form (4.1),
which may easily be confused with expressions of the same form that are not
identically true.

Table 4.1. The format of a proof rule

� �

� � �

� �

�

4.1.3 Non-temporal Basis

Although temporal operators require special proof rules, the proofs of tem-
poral properties are ultimately based on non-temporal rules. There are two
reasons for this:

• Non-temporal logical connectives have the same meaning in temporal and
non-temporal expressions. Therefore, proof rules for them can be taken as
such from non-temporal logics.
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• Non-temporal rules are needed in proving that a state predicate or an
action is identically true, i.e., is satisfied for any state or step, respectively.

A well-known example of non-temporal rules is the modus ponens rule for
implication (⇒), given in Table 4.2. Since all laws have the form E ⇒ F (or
E ⇔ E), the modus ponens rule formalizes how arbitrary laws can be utilized
in deductions.

Table 4.2. The modus ponens rule

�

� �
�

�

Since we want to concentrate on temporal deductions, non-temporal rules
will be taken here as granted and will not be discussed any further.

The proofs of all interesting temporal properties are ultimately based on
proving that some concrete state predicates or actions are identically true. The
connection of this to temporal logic is that an identically true state predicate
(action) is satisfied by all states (steps) in any behavior. This is formalized by
the two tautology rules given in Table 4.3. Deducing that the premises of these
rules hold takes place by non-temporal reasoning, which is omitted here.

Table 4.3. Tautology rules

� is identically true

� �

�
is identically true

�
� � �

Review Questions

Question 4.1.1 What is the difference between an expression E ⇒ F and a
proof rule with premise E and conclusion F?

Question 4.1.2 What is the non-temporal basis of temporal proofs?

Exercises

Exercise 4.1.1 Take a few temporal laws in Chap. 3, and write them out as
proof rules.

Exercise 4.1.2 Why can the premises of the two tautology rules in Table 4.3
not be written simply as P and [A], respectively?



4.2 Deduction of Invariants 107

4.2 Deduction of Invariants

The discussion of temporal proof rules is started with those for state invariants
and step invariants.

4.2.1 State Invariants

As a simple special case, consider the situation where P and P ⇒ Q are not
tautologies, but both �P and �(P ⇒ Q) can be deduced from the given
assumptions. Obviously, �Q then also holds. Although such a deduction re-
sembles modus ponens, it is not an application of it.

The first rule in Table 4.4 formalizes this temporal weakening of a state
invariant.

More generally, to deduce that state predicate P is invariantly true, it
suffices to show that the initial state satisfies P, and that any allowed action
preserves it. This state invariant rule is given as the second rule in Table 4.4.

Table 4.4. State invariant rules

� �

�
�

�
� � �

�
�

�

�
� � �

�
�

�
� � �

�
′ �

� �

�

�
�

�
� � �

�
�

�
� � � � ′ � � �

�
′ �

� �

� � � � · · · � � · · ·
� � � �

� � � � � � � � � � � �

Fig. 4.1. Checking the state invariant rule

The validity of this rule can be shown by considering an arbitrary behavior
σ = 〈s0, s1, . . . 〉 that satisfies the second premise but violates the conclusion
�P, as illustrated in Fig. 4.1. If si is the first state where P is not true, then
either i = 0, in which case the first premise does not hold, or i > 0, in which
case the third premise is violated by step (si−1, si). This means that the
conclusion must hold in each case. Notice, however, that for this reasoning to
hold it is essential that P and A contain no variables outside of set X, which
is the (omitted) subscript of the brackets.
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In order to show that the third premise in this rule is satisfied in a given
situation, one only needs to consider states and steps that are reachable from
a legal initial state. A way to rule out (some) non-reachable states is to use
another invariant for characterizing those states that are (or may be) reach-
able. The third rule in Table 4.4 captures such a use of an auxiliary invariant
I.

4.2.2 Step Invariants

Step invariants appear in stability and steadiness conditions for state predi-
cates and state functions, respectively (see Sect. 3.3.10, p. 76). They are also
needed in deducing state invariants, as is evident from the state invariant
rules.

Analogously to temporal weakening of state invariants, the first rule in
Table 4.5 formalizes temporal weakening of step invariants. A more generally
applicable step invariant rule, which makes use of an auxiliary state invariant,
is given as the second rule in the same table.

Table 4.5. Step invariant rules

�
� � �

�
� � � � �

�
� � �

�
�

�
� � �

�
� � � � ′ � � � � �

�
� � �

4.2.3 Simple Examples

Two small examples will be discussed on using the above invariant rules.

State Invariant Rule

As an example of formally deducing a state invariant, consider the assertion

�(flam s = true ∨ flam s = false)

for the gas-burner example of Chap. 2. Its deduction from the specification is
given in Table 4.6. The proof in this table is organized in a top-down fashion.
The formula to be deduced is first given as a goal, and then an instantiation
of a proof rule is given for its deduction.1 The validity of each premise is

1Local names will be introduced for expressions so that they are always the same
as those used in the proof rules referred to. The same names may therefore be used
for several different purposes, but indentation shows their scopes.
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Table 4.6. Proof of a simple state invariant

�
� � � � � �

� true � � � � � �
� false � – goal

To prove this goal, use the second state invariant rule (Table 4.4, p. 107) for
� �

� � � � �
� true � � � � � �

� false
�

� � � � � � � � � � � � � � � �
�

� � � � � � � �
�

� � � � � � � �

� � � � � � � � � � � � � � � �
�

� � � � � � � �
�

� � � � � � � �

� � � � � � � � � � � � � � � 	 � � � � � �
�

� � � � �

with premises:
1 � – from assumptions
2 �

� � �
– from assumptions

3 �
�

�
� � �

�
′ �

Written out, this subgoal is
�

� � � � � � �
� true � � � � � �

� false � �

� � � � � � � � � � � � � � � �
�

� � � � � � � �
�

� � � � � � � �

� � � � � � � � � � � � � � � �
�

� � � � � � � �
�

� � � � � � � �

� � � � � � � � � � � � � � � 	 � � � � � �
�

� � � � � �
� � � � � � ′

� true � � � � � � ′
� false

�

To prove this subgoal, use action tautology rule (Table 4.3, p. 106) for
�

�
� � � � � �

� true � � � � � �
� false � �

� � � � � � � � � � � � � � � �
�

� � � � � � � �
�

� � � � � � � �

� � � � � � � � � � � � � � � �
�

� � � � � � � �
�

� � � � � � � �

� � � � � � � � � � � � � � � 	 � � � � � �
�

� � � � � �
� � � � � � ′

� true � � � � � � ′
� false

with premise:
1

�
is identically true – by non-temporal deduction

checked, either by non-temporal deduction, or by taking it as a subgoal to be
proved in the same manner. Once all premises have been checked, the proof
is complete.

The last non-temporal step in this proof is to check that

(flam s = true ∨ flam s = false) ∧ (Req on e ∨ · · · ) ⇒
flam s ′ = true ∨ flam s ′ = false

is an identically true action. This reduces to checking separately for all actions
of the specification that expressions

(flam s = true ∨ flam s = false) ∧ Req on e ⇒
flam s ′ = true ∨ flam s ′ = false ,

· · ·
(flam s = true ∨ flam s = false) ∧ Close s ⇒

flam s ′ = true ∨ flam s ′ = false
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are identically true. This is obviously trivial, since there are only three choices
for the value of flam s ′ in the actions, and these are flam s, true, and false.

Step Invariant Rule

As an example of using step invariant rules, consider the invariant

�[¬flow s ∧ flow s ′ ⇒ ign s ′] .

Deduction steps for this are given in Table 4.7, and they are very similar to
the ones in the previous example. Again, the proof involves a non-temporal
step, where an action expression is shown to be identically true.

Table 4.7. Proof of a simple step invariant

�
�

�

� � � � � � � � � � � ′ � � � � � ′ �
– goal

To prove this goal, use the first step invariant rule (Table 4.5, p. 108) for
�

� � � � � � � � � � � � � � � �
�

� 	 
 � � � � �
�

� 	 
 � � � � �

� � � � � � � � � � � � � � � �
�

� 	 
 � � � � �
�

� 	 
 � � � � �

� � � 	 � � � � � � � � � � � � � � � � � �
�

� � � � �
� � �

� � � � � � � � � � � ′ � � � � � ′

with premises:
1 �

� � �
– from assumptions

2 �
� � � � �

Written out, this subgoal is
�

� � � � � � � � � � � � � � � �
�

� 	 
 � � � � �
�

� 	 
 � � � � �

� � � � � � � � � � � � � � � �
�

� 	 
 � � � � �
�

� 	 
 � � � � �

� � � 	 � � � � � � � � � � � � � � � � � �
�

� � � � �
� �

�

� � � � � � � � � � � ′ � � � � � ′ � �

To prove this subgoal, use action tautology rule (Table 4.3, p. 106) for
�

�
� � � � � � � � � � � � � � �

�
� 	 
 � � � � �

�
� 	 
 � � � � �

� � � � � � � � � � � � � � � �
�

� 	 
 � � � � �
�

� 	 
 � � � � �

� � � 	 � � � � � � � � � � � � � � � � � �
�

� � � � �
� �

�

� � � � � � � � � � � ′ � � � � � ′ �

with premise:
1

�
is identically true – by non-temporal deduction

Exercises

Exercise 4.2.1 Show that it is essential for the state invariant rules (Ta-
ble 4.4 on p. 107) that P and A contain only state variables in X.
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Exercise 4.2.2 Use the laws given in Chap. 3 to show that the temporal
weakening rule for invariants (first rule in Table 4.4 on p. 107) is valid.

Exercise 4.2.3 Show how the third state invariant rule in Table 4.4 (p. 107)
can be derived from the other rules in this table.

Exercise 4.2.4 Show that the second step invariant rule in Table 4.5 (p. 108)
can be derived from the simple rule in the same table.

Exercise 4.2.5 Deduce the property

�[ign s ′ ⇒ flow s ′]

for the gas-burner example by utilizing law (3.41) on p. 75, and using a state
invariant rule.

Exercise 4.2.6 Prove formally that your construction in Exercise 3.5.7
(p. 100) for the semaphore example satisfies the given safety requirements.

Exercise 4.2.7 Deduce state invariant �(x ≥ 0) for an action system with
initial condition x = 0 and actions

A : x ≥ 0 B : x mod 3 = 1 C : x mod 2 = 1→ x ′ = x + 2 , → x ′ = x − 1 , → x ′ = x − 3 .

4.3 Deduction of Eventualities

In general, liveness properties lead to more complex deductions than safety
properties. In this section we give a number of useful proof rules for them.

4.3.1 Temporal Weakening of Eventualities

Similarly to temporal weakening of invariants, temporal weakening of eventu-
alities can be described by the intuitively simple rules in Table 4.8.

Table 4.8. Temporal weakening of eventualities

� �

�
�

�
� � �

�
�

�〈 � 〉
�

� � � � �

�〈 � 〉

� �
�

�
� � �

�
�

�
� � � � �

�
� �

� � 〈 � 〉
�

� � �
�

�

�
� � � � �

�
� 〈 � 〉

〈 � 〉 � 〈 � 〉
�

�
�

� � �

�
� � � � �

〈 � 〉 � 〈 � 〉

Since �(P ⇒ P ∧ I) always holds when I is an invariant, these temporal
weakening rules also allow us to weaken preconditions in ‘leads to’ properties
by invariants, as shown by the rules in Table 4.9. Of course, by weakening the
preconditions the ‘leads to’ properties themselves are strengthened.
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Table 4.9. Strengthening of ‘leads to’ properties

�
� �

�
�

�
�

� �
�

�
� �

� 〈 � 〉
�

�

� � 〈 � 〉

4.3.2 Deduction of Fairness Properties

Eventualities and ‘leads to’ properties are usually proved utilizing some fair-
ness properties. Therefore, it is useful to have rules for also deducing such
fairness properties that have not been given as assumptions.

For weak fairness, law (3.75) on p. 83 expresses its deduction directly from
an associated ‘leads to’ property. For strong fairness no equally simple law
can be given. However, if the enabling of A either leads to its execution or
to a state from which point onwards A will be continually disabled, then we
obviously have strong fairness with respect to A. Continual disabling of A can
be guaranteed by a suitable stable state predicate P. This can be formalized as
the rule given in Table 4.10. To avoid the use of too many kinds of operators,
stability is expressed here and in other proof rules of this chapter in terms of
explicit step invariants.

Table 4.10. Rule for deducing strong fairness

� � �
�

� � � � �

� 〈 � � � � �
�

� � � ′ � �
�

�
′〉

�
�

�
�

�
� � �

�
� � � � � �

�
�

�
�

�
′ �

SF
� � �

Further rules for deducing weak and strong fairness properties were given
as laws in Sects. 3.4.9 (p. 83) and 3.4.10 (p. 84).

4.3.3 Utilizing Weak Fairness

If a weakly fair action A can be disabled only by its own execution, then its
enabling will eventually force its execution. Such a situation is illustrated in
the left-hand part of Figure 4.2, which shows the kinds of transitions that are
then possible in those reachable states that satisfy Enabled A+, and which
either preserve this enabling or make it false.

This situation is generalized in the right-hand part of Fig. 4.2 to a situation
where weak fairness with respect to action A forces an eventual execution of
action B. Here P is assumed to be stable unless B is executed, and P is also
assumed to ensure the enabling of A+ and that A implies B. With these
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〈 � 〉
�

�

� � �
�

� � � � �

〈 � 〉 〈 � 〉

〈 � � � 〉
�

�

�

� � �
�

� � � � �

〈 � � � 〉 � 〈 �
� � � 〉

Fig. 4.2. Transitions in the situation of the weak fairness rule

assumptions, if P has become true, then A will stay enabled until either it is
executed (which implies execution of B), or P becomes false (which can only
take place by executing B).

To make this precise, the deduction of P � 〈B〉 in this situation is formu-
lated as the weak fairness rule in Table 4.11. Because of the third premise,
the conclusion in the rule could also be replaced by stable P until 〈B〉.

Table 4.11. Weak fairness rule

WF
� � �

�
�

�
� � � �

�
� � � � � �

�
�

�
�

�
′ � � �

�
�

�
� � � � �

� � 〈 � 〉

To check that this rule is, indeed, valid, consider an arbitrary behavior
that satisfies the premises of the rule but violates the conclusion. As shown
in Fig. 4.3, such a behavior has a state si that satisfies P, but there are no
subsequent 〈B〉 steps. On account of the third premise, P is permanently true
from state si on. As a consequence, the fourth premise then requires that
there is no subsequent 〈A〉 step either. Since the second premise requires A+

to stay continually enabled (which means that there can be no stuttering A

steps, either), we reach a contradiction with the first premise.

4.3.4 Utilizing Strong Fairness

Since a strong fairness property always implies the corresponding weak fairness
property, the above weak fairness rule is directly applicable also with strong
fairness assumptions. When this is not sufficient, we need to use a stronger
rule that is specific to strong fairness.
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· · · � � · · ·

�
� � �

�
� � � � �

�
� � �

�
� � � � �

�
� � �

�
� � � � �

�
� � �

�
� � � � �

� 〈 � 〉
� 〈 � 〉

�
�

� 〈 � 〉
� 〈 � 〉

�
�

Fig. 4.3. Checking the weak fairness rule

�

�
� � �

�
� � � �

�
� � �

�
� � � � �

Fig. 4.4. Transitions that preserve � in the situation of the strong fairness rule

Analogously to the situation in the weak fairness rule, Fig. 4.4 illustrates
state transitions in the following situation, where strong fairness with respect
to action A forces eventual execution of action B. State predicate P is again
assumed to be stable unless action B is executed, and P is also assumed to
ensure that A implies B. Instead of implying the enabledness of A+, P is
now assumed to imply only that A0 is not enabled. In addition, an auxiliary
liveness assumption is made that the predicate P ∧ ¬Enabled A cannot stay
true indefinitely. Under these assumptions, once P has become true, either it
becomes false in the execution of B, or action A is repeatedly enabled, forcing
its eventual execution (which then is also an execution of B). For simplicity,
transitions in which P turns false are omitted from Fig. 4.4.

The rule for deducing P � 〈B〉 in this situation is made precise as the
strong fairness rule given in Table 4.12.

To check the validity of this rule, consider an arbitrary behavior that
satisfies its premises but violates the conclusion. As shown in Fig. 4.5, it has
a state si that satisfies P but has no subsequent 〈B〉 step. The third premise
then implies that P stays true in all subsequent states. The second premise
guarantees that A0 is not enabled in any of these states. Because of the fifth
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Table 4.12. Strong fairness rule

SF
� � �

�
�

�
�

�

� � �
�

� � � � � �

�
�

�
�

�
′ � � �

�
�

�
� � �

�
� � � �

� 〈 � �
′ � � � �

�
� � � ′ � 〉

�
�

�
� � � � �

� � 〈 � 〉

· · · � � · · · � � � � � � · · ·

�

�
� � �

�
� � � � �

� � �
�

� � � �

�

�
� � �

�
� � � � � �

�
� � �

�
� � � � �

� 〈 � 〉
� 〈 � 〉

� 〈 � 〉
� 〈 � 〉

� 〈 � 〉
� 〈 � 〉

Fig. 4.5. Checking the strong fairness rule

premise, none of the steps can now be 〈A〉 steps, either. On account of the
fourth premise, A must be enabled either in state si or in one of the subsequent
states sj. Repeating the reasoning from the next state after that leads to an
infinite number of states with A+ enabled without any execution of 〈A〉, and
without intervening states with A0 enabled, which is in contradiction with
the first premise.

Notice that this rule for utilizing strong fairness requires that another
eventuality has already been proved. This means that we cannot avoid using
weak fairness rules even when all liveness assumptions are strong fairness
assumptions.

4.3.5 Well-founded Ordering

The above fairness rules assume a state predicate P that stays continually true
until the desired action 〈B〉 is executed. However, it is not always possible to
find such a state predicate. The transitivity of � may be helpful in such
situations, but even this is not always sufficient. A more general solution is
provided by a rule that utilizes well-founded (partial) ordering.

A binary relation  in a non-empty set Z is well founded if there are no
infinite descending sequences z1  z2  . . . with zi ∈ Z. That is, starting
from any z1 ∈ Z, all descending sequences are necessarily finite.

The arithmetic ‘greater than’ relation in the set of non-negative integers
is obviously well founded. Another example of frequently used well-founded
relations is the ‘lexicographic greater than’ relation between n-tuples of non-
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negative integers, for which (x1, . . . , xn) > (y1, . . . , yn) when we have xj > yj

for some j, 1 ≤ j ≤ n, but xi = yi for all i, 1 ≤ i < j. A very simple well-
founded ordering of non-negative integers is the one where i  0 for all i > 0,
and  is undefined for all other pairs.

Let f now denote a state function whose value is guaranteed to be in some
set Z when the state satisfies state predicate P, and let  be a well-founded
relation in Z. If we can show that, starting from any state where P is satisfied,
eventually either 〈A〉 is executed, or a state is entered where P again holds
but the value of f has been decreased, then 〈A〉 must eventually be executed.
The basis for this reasoning is that f can be decremented only finitely many
times.

This reasoning is formalized in Table 4.13 as the well-founded ordering
rule, where z denotes an arbitrary element of Z.

Table 4.13. Well-founded ordering rule

�
� � ∈ �

is identically true
�

� � �
� � �

� 〈 � �
�

′ � � � � ′〉
� � 〈 � 〉

The second premise in the well-founded ordering rule may require case
analysis, where this premise is checked for the possible values of f. In fact, the
simple case rule in Table 4.14 can be derived trivially from the well-founded
ordering rule by replacing P by P ∨ Q and defining the state function f, for
instance, as

s[[f]] =

{
1 if s[[P]] ,

0 if s[[¬P ∧ Q]] .

The ordering  is even irrelevant here, since both cases lead to the execution
of action 〈A〉.

Table 4.14. Case rule for ‘leads to’

� � 〈 � 〉
�

� 〈 � 〉
�

� �
� 〈 � 〉

4.3.6 Example

As an example we consider proofs about exiting states Starting and Ignited

in the gas-burner example of Chap. 2 (see Fig. 2.5, p. 38).
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Table 4.15. Proof of exiting state � � � � � � � �

� � � � � � � �
� 〈 � � � � � � � � � � � � � 〉 – goal

To prove this goal, use weak fairness rule (Table 4.11, p. 113) for
�

�

� � � � � � � � � � � � � � �

� � � � � � � � � �

with premises:
1 WF

� � �

By (3.78) this is implied by SF
� � � ; written out as

SF
� � � � � � � � � � � � � � � – by assumptions and (3.79), p. 84

2 �
�

�
� � � �

�
� � � � � �

Written out, this subgoal is
�

� � � � � � � � � � � � �
�

� � � � � � � � � � � � � � � � � � �

To prove this subgoal, use the first tautology rule (Table 4.3, p. 106) for
� � � � � � � � � � � � � �

�
� � � � � � � � � � � � � � � � � �

with premise:
1 � is identically true

Written out, this subgoal is
� � � � � � � � � � � � � � � � � � �

�
� � � 	 � � � � � 	 � � is identically true

– nontemporal tautology
3 �

�
�

�
�

′ � � �

Written out, this subgoal is
�

� � � � � � � � � � � � � � � � � � ′ � � � � � � � � � � � � � � �

To prove this subgoal, use the first step invariant rule (Table 4.5, p. 108) for
�

�
� � 
 � � � � � � 
 � � � � �

�
� � 	 � � � � �

�
� � 	 � � � � �

� � � 
 � � � � � � 
 � � � � �
�

� � 	 � � � � �
�

� � 	 � � � � �

� � � � � � � � � � � � � � � � � � � � � �
�

� � � � �
�

� � � � � � � � � � � � � � � � � � ′ � � � � � � � � � � � � � �

with premises:
1 �

� � �
– from assumptions

2 �
� � � � �

Written out, this subgoal is
�

� � � 
 � � � � � � 
 � � � � �
�

� � 	 � � � � �
�

� � 	 � � � � �

� � � 
 � � � � � � 
 � � � � �
�

� � 	 � � � � �
�

� � 	 � � � � �

� � � � � � � � � � � � � � � � � � � � � �
�

� � � � �
� � � � � � � � � � � � � � � � � � � ′ � � � � � � � � � � � � � � � �

– by action tautology rule (Table 4.3, p. 106)
4 �

�
�

� � � � �
– by action tautology rule (Table 4.3, p. 106)
– since

�
and

�
are the same
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Exit from Starting

Intuitively it is clear that state Starting is always eventually exited either by
action Stop s or by action Ign off s:

Starting � 〈Stop s ∨ Ign off s〉 .

The justification for this is that always either Stop s or Ign off s is enabled in
state Starting, and both of these actions have a strong fairness requirement.

A formal proof of this is given in Table 4.15. The crucial step is the use
of the weak fairness rule. Since the enabling condition of Stop s ∨ Ign off s

is Starting, this step gives the desired result directly. The first premise of
this step, WF(A), follows directly from the fairness assumptions in the speci-
fication. The second premise needs only non-temporal proofs and a tautology
rule, whereas the third premise also needs a simple use of a step invariant
rule.

Exit from Ignited

Obviously, state Ignited need not be exited ever, if the heat request and
the flame indicator are never turned off. Therefore, let us make the additional
fairness assumption that continual burning of gas will always eventually result
in variable req e being set off, i.e.,

WF(flam e ∧ Req off e) . (4.2)

Notice that this does not prevent the request from being repeatedly turned
off and on while the flame is burning.

With this additional assumption we can prove that action Close s is al-
ways eventually executed in state Ignited, i.e., that

Ignited � 〈Close〉
is true.

The idea of the proof is illustrated in Fig. 4.6. In state Ignited, either
req s and flam s are both true, or one of them is false (state 3). In the
former case, either req e and flam e are both true (state 1), or one of them
is false (state 2). The weak fairness assumption (4.2) ensures that state 1 is
always eventually exited to state 2, although it can still be re-entered from
there. Strong fairness on both Req s and Flame off s guarantees, however,
that state 2 will always eventually be exited to state 3, although state 2 can
still be re-entered from there. Finally, strong fairness on Close s guarantees
that this action will eventually be executed in state 3. This reasoning is made
more precise in Table 4.16.

Review Questions

Question 4.3.1 What is meant by well-founded ordering?
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1

2

3

� � � � � � � �
�

� � � � � � � �

� � � � � � � �
�

� � � � � � � �

�
� � � �

� � � � � � � � � �

�

� � � � �
�

� � � � �

�

� � � � �
�

� � � � �

� � � � � � � � � �

� � 	 
 � � �

Fig. 4.6. Illustration of proving
� � 	 
 � � �

� 〈 �
� � � � � 〉

Exercises

Exercise 4.3.1 Complete the deductions in Tables 4.15 (p. 117) and 4.16
(p. 120).

Exercise 4.3.2 Prove that ��Idle holds in the gas-burner example under
the additional fairness assumption (4.2) on p. 118.

Exercise 4.3.3 Prove formally that your construction in Exercise 3.5.7
(p. 100) for the mutual exclusion example satisfies the given liveness require-
ments.

Exercise 4.3.4 Prove that x = 0 � x = 1 holds for an action system with
initial condition y = 0 and actions

SFA : y mod 5 = 0 WFB : T→ x ′ = x + 1 , → y ′ = y + 1 .

Exercise 4.3.5 How do you prove for the action system of Exercise 4.3.4
that x = 0 � x > n for any integer n > 0?
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Table 4.16. Proof of exiting state
� � � � � � �

� � � � � � �
� 〈 �

� � � � � 〉 – goal

To prove this goal, use strong fairness rule (Table 4.12, p. 115) for
�

�

�
� �

� � � � �

� �
� � � � � � �

with premises:
1 SF

� � � – from assumptions

2 �
�

�
�

�

� � �
�

� � � � � � – trivial for non-stuttering
�

3 �
�

�
�

�
′ � � �

– by step invariant (Table 4.5, p. 108) and
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Exercise 4.3.6 Assuming that the initial values of i and j are positive inte-
gers, that function n(i) always yields a positive integer, and that S does not
change the values of i and j, the following actions model a double loop around
statement S:

WFA : i > 0 ∧ j > 0 WFB : i > 0 ∧ j = 0→ S → i ′ = i − 1

∧ j ′ = j − 1 , ∧ j ′ = n(i) .

Prove that these actions will lead to a state in which i = j = 0.
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Basic Language Facilities

Basically, only an execution model for an action language was given in Chap. 2,
and anybody who is used to high-level programming languages will miss the
conveniences that have been developed for them. In this chapter the action
language will therefore be extended with some basic language facilities.

The main purpose of these facilities is to make it easier for the specifier
to express his or her intentions. On the other hand, with precise definition of
their meanings, the possibilities for formal reasoning are not weakened. The
formalization reveals, however, some complexities that the specifier has to be
aware of.

The intention of this chapter – and this book as a whole – is not to de-
velop a complete specification language with precise syntax, but to explore
the basic concepts needed in such a language, and the consequences of their
introduction. To make the presentation more concrete, notation and conven-
tions will be introduced for expressing these concepts in the action language,
even though detailed language-design issues are avoided by purpose.

The plan for the chapter is as follows:

• Finite-state structures are introduced in Sect. 5.1 for the modeling of con-
trol flow. Instead of using only flat state structures, where all states are on
the same level, hierarchical structuring is imposed on them by using the
ideas of statecharts to express both parallel and nested states.

• In Sect. 5.2 we explore the effects of variable declarations with types,
scopes, and initial or default values.

• The modeling facilities of action systems are extended in Sect. 5.3 with the
notions of objects, classes, and relations between objects. More advanced
aspects of object orientation will be postponed to Chap. 7.

• The idea of multi-object actions is introduced in Sect. 5.4. Technically
this leads to parameterized actions where the parameters denote objects.
Intuitively, an action is then executed jointly by its ‘participant’ objects,
and the capability to participate in actions replaces the conventional notion
of encapsulated ‘methods’.
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• The logical meaning of multi-object actions is analyzed in Sect. 5.5. In par-
ticular, this leads to more refined needs in expressing fairness requirements
in the action language.

• In logic, action parameters correspond to existentially quantified rigid vari-
ables. The use of rigid variables and their effect on logical reasoning is
therefore discussed in Sect. 5.6.

5.1 Finite-state Structures

As programming abstractions, finite-state structures are useful for the model-
ing of control flow. In this section we extend the action language with facilities
for their utilization.

5.1.1 Motivation for Finite-state Structures

Finite-state structures are not available as a programming facility in conven-
tional high-level languages, in which explicit state transitions are avoided by
the implicit control flow of structured programming. In some areas, like the
design of embedded systems and communication protocols, modeling in terms
of finite-state structures is, however, standard practice.

Compared to implicit control with high-level statement structures, explicit
states and state transitions seem to correspond better to human intuition in
situations where events are atomic, and the control flow between them does
not obey the simple patterns of structured programming. Natural possibilities
for graphical illustration are also an advantage.

Since action systems have no implicit variables for control threads, and
no distinction is made between variables that are used for storing data and
those used for controling the enabling of actions, finite-state structures add
an important facility for providing intuition about this difference.

5.1.2 Mutually Exclusive States

In the following, finite-state structures are introduced in the action language
by state declarations of the form

state State1, . . . , Statem , (5.1)

where each Statei, i = 1, . . . , m, is a state name.
State names in a state declaration (5.1) are understood as mutually exclu-

sive state predicates, whose truth values satisfy

�(State1 ∨ · · · ∨ Statem) , (5.2)
�(Statei ⇒ ¬Statej) for i �= j (5.3)
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in all executions.
In terms of TLA, a finite-state structure can be understood to correspond

to an implicit variable, whose value always directly indicates which of the
alternative state predicates is currently true. In an implementation such an
implicit state variable might correspond to the program counter of a control
thread.

In action systems we adopt the convention that a primed state name in an
action body indicates an entry to that state. Since the associated implicit state
variable cannot be directly modified, no explicit proofs are then needed for
checking that the value of this variable always indicates one of the alternative
states, assuming that it initially indicates one.

It is also convenient to have a simple notation for the initial state in a
finite-state structure, i.e., for the associated state predicate that is assumed
to be initially true. We adopt the convention that marking a state name in a
state declaration (5.1) with an asterisk denotes such an initial state. In the
absence of such a marking, a state declaration gives no constraints for the
initial state, except that condition (5.2) needs to be satisfied.

5.1.3 Example: Gas-burner States

In the gas-burner example of Chap. 2, state names Idle, Starting, and
Ignited were used as shorthand for certain state predicates that depend on
variables flow s and ign s (see Sect. 2.2.9, p. 37). Another possibility would
be to introduce these mutually exclusive states by a state declaration

state Idle∗, Starting, Ignited ,

and to change those system actions that control the actuators into

SFStart s : Idle ∧ req s ∧ ¬flam s→ flow s ′ = true

∧ ign s ′ = true

∧ Starting ′ ,

SFIgn off s : Starting ∧ flam s→ ign s ′ = false

∧ Ignited ′ ,

SFStop s : Starting ∧ ¬flam s→ flow s ′ = false

∧ ign s ′ = false

∧ Idle ′ ,
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SFClose s : Ignited ∧ (¬req s ∨ ¬flam s)→ flow s ′ = false

∧ Idle ′ .

Invariants

�(Idle ⇔ flow �= true ∧ ignition �= true),

�(Starting ⇔ flow = true ∧ ignition = true),

�(Ignited ⇔ flow = true ∧ ignition �= true)

would then not be satisfied as tautologies, by the definition of the state pred-
icates involved, but they could easily be proved as state invariants for the
behaviors of the system.

It is a matter of taste whether the specification is easier to understand in
this form or not. On one hand, this form introduces another (implicit) state
variable, which is superfluous, but, on the other hand, this variable is useful in
describing the control flow, which was represented in the Ada implementation
by the program counter of the main program.

5.1.4 Parallel State Structures

Single finite-state structures are often insufficient for practical use. In partic-
ular, the number of states may become too large to be managed easily, and
a multitude of often similar state transitions may complicate their graphical
illustration.

This leads to a need for multiple state declarations of the form (5.1) on
p. 126, each giving rise to a finite-state structure of its own. We then say that
these finite-state structures are parallel to each other.

In principle, each of the parallel finite-state structures can be in any of
its states independently of the others. Therefore, in the presence of k parallel
state structures, each with mi different states, i = 1, . . . , k, the total number
of state combinations is m1 × · · · ×mk. In graphical illustrations, where each
finite-state structure is given separately, only m1 + · · ·+mk nodes are needed
to visualize the states.

With parallel finite-state structures, invariants (5.2) and (5.3) hold sepa-
rately for each of them.

5.1.5 Nested State Structures

It is often desirable to group several states into superstates, which gives the
possibility for a hierarchical view of the state structure. This leads to the
idea of nested finite-state structures, where states may be defined to contain
internal substate structures.

Let State be a state name, and let
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state Sub1, . . . , Subn

declare another finite-state structure immediately within State. States Subi

are then called (immediate) substates of State, which in turn is their (im-
mediate) superstate. In the presence of intermediate levels of substates or
superstates the word ‘immediate’ is left out.

For substate structures, invariant (5.2) on p. 126 changes into

�(State ⇔ Sub1 ∨ · · · ∨ Subn) , (5.4)

whereas (5.3) stays as

�(Subi ⇒ ¬Subj) for i �= j . (5.5)

Obviously, (5.2) is a special case of (5.4), where the predicate for the imme-
diate superstate is the identically true state predicate T.

In terms of TLA, state invariant (5.4) means that the implicit variable
that corresponds to a substate structure also needs an (n + 1)st alternative
value for the situation where the superstate predicate State is false.

For clarity and unique identification of state names, it is often convenient
to prefix a substate name by the name(s) of its superstate(s), as for instance
in State.Subi.

With nested finite-state structures the role of marked states extends in
a natural way to denote default substates with the following meaning. If the
system is initially in a named state that has substates, and one of these sub-
states is marked, then this marked substate predicate will be initially true.
Also, when a state is entered by a primed state name in an action body, and
this state has a marked substate, then this marked substate is entered by
default, unless explicitly specified otherwise.

5.1.6 Example

As an example, consider modeling an interface between user requests and
system services, as illustrated in Fig. 5.1. At the highest level of abstraction,
this interface is either Free to be used by a user process, or Engaged with
some user. When Engaged, it shows two faces, one towards the user and one
towards the system, represented as two parallel substate structures separated
in Fig. 5.1 by a dashed horizontal line.

Towards the user, the interface is either Live, i.e., still capable of communi-
cation, or Dead. Similarly, it is either Active or Finished towards the system.
When Live, the interface is either Listening to the user or Responding to
some request. From the viewpoint of the system, when the interface is Active,
it is either Idle or Requesting a service.

To illustrate the notation that will be used for textual representation of
nested and parallel finite-state structures, the state structure in Fig. 5.1 can
be given in the form
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�
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Fig. 5.1. Example of nested and parallel states

state Free∗, Engaged

where Engaged = {state Live∗, Dead;

state Active∗, Finished}

where Live = {state Listening∗, Responding};

Active = {state Idle∗, Requesting} ,

where state declarations are followed by where clauses, in which the internal
substate structures are specified.

5.1.7 On the Role of Graphical Illustrations

The action language will not be designed as a visual language. Therefore,
state-transition diagrams, like the one in Fig. 5.1, will not be given a primary
role in specifications. They have to be taken only as illustrations that are
intended to provide better intuitive understanding.

In fact, it can be argued that the power of graphical illustrations is in
providing abstractions, in which only selected properties are displayed. For
instance, Fig. 5.1 shows that graphical illustrations may have arrows that do
not enter or exit elementary states, but some intermediate structures of par-
allel and/or nested states. This means that there may be several alternatives
for the exact source and/or target substates of such transitions, and one may
by purpose omit visualizing these more precisely.

Also, action systems could not, in general, be easily edited in the graphical
form of state-transition diagrams. The reason for this is that one action may
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give rise to several arrows in such a diagram, and several actions may also
give rise to multiple arrows between the same states.

5.1.8 Interpreting Substate Structures in TLA

When language facilities are introduced, it is important that they are well de-
fined in terms of the basic concepts that are used. Although the idea of nested
and parallel finite-state structures looks quite harmless, its incorporation in
a specification language may lead to some complexities. The purpose of this
subsection is to analyze these complexities in the light of translating action
systems into TLA.

� � � �

� � � �

� �

� �

Fig. 5.2. Different kinds of transitions between substates

As an example, consider the situation illustrated in Fig. 5.2. If the tar-
get state of a transition is S2.U2, for instance, this can be indicated in an
action simply by S2.U ′

2. This can, however, affect all three implicit variables
that correspond to the three finite-state structures, as is illustrated by the
transition from state S1.T2 to S2.U2.

Another point to notice is that, if the new state given in an action is one
that has substates, say S2, then the actual target state must be the default
substate within S2, even if the current state already is some substate of S2.
If no default substate is given, this is an error that can be found by static
analysis.

In the presence of parallel finite-state structures, an action body may need
to have several primed state names. In the situation of Fig. 5.1, for instance,
Dead ′ ∧ Finished ′ would indicate target states in both of the two parallel
substate structures within Engaged. On the other hand, if the current state
already is Engaged, and one wishes to change the state in only one of the
substate structures, then Dead ′, for instance, would be sufficient. However,
if the current state is Free, then this is not sufficient as such, and automatic
completion with the default Live.Listening ′ also seems suspicious in this
case.
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Since our purpose is not to design a complete action language in this book,
we do not need to adopt a complete solution to these problems. Therefore,
we do not constrain the action language so that multiple primed state names
could always be statically checked to be both consistent with each other and
sufficient to uniquely indicate the target state. We will, however, use the
language so that this will always be the case.

For the reasons discussed above, finite-state structures introduce, in gen-
eral, proof obligations for action systems, and further possibilities for action
systems to be erroneous. These proof obligations are associated with state
invariants that ensure that all actions are well defined also with respect to
transitions in finite-state structures, in all those reachable states in which
the actions are enabled. Such proof obligations strengthen those discussed in
Sect. 3.5.6 (p. 91).

Review Questions

Question 5.1.1 What are the advantages of parallel and nested finite-state
structures over ordinary flat finite-state structures?

Question 5.1.2 How do the actions of the action language correspond to
arrows in state-transition diagrams?

Question 5.1.3 Why would it not be a good idea to make the action lan-
guage a visual language, based on parallel and nested state structures?

Question 5.1.4 Why can parallel finite-state structures make an action sys-
tem erroneous?

5.2 Typing of State Variables

Declaration of variables, as used in high-level programming languages, asso-
ciates variables with types and scopes, and possibly also with initial values.
A variable may also be declared to be immutable in the sense that its value
cannot be changed by assignments.

In this section we discuss the introduction of these kinds of facilities into
the action language. Although this makes the language more convenient for
a specifier, the discussion shows that there are also some drawbacks in the
complexity behind the seeming simplicity of these features.

5.2.1 Types as Sets of Values

Basically, the type of a variable determines the set of values that can be
assigned to the variable. For a human reader typing provides intuition about
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how the variables are intended to be used. Typing is also helpful in resolving
the overloading of operator symbols, and it makes it possible to use static
checks to reveal errors that lead to type inconsistency in expressions and
assignments.

A type brings with it a collection of operations that are defined for it.
One has, however, to be aware of exceptional situations where the result of
an operation is undefined, as it is in division by zero for instance, or falls
otherwise outside of the range of values specified for the type.

No fixed collection of types will be given here, but, corresponding to the
sets of values included in Val (see Sect. 3.1.1, p. 58), at least the availability of
Booleans (B), enumeration types, natural numbers (N), integers (Z), characters
(C), strings (S), and reals (R) will be assumed as primitive types. Obviously,
declarations of finite-state structures can be understood as a variant of using
enumeration types.

When no type constraints are given for the values of a variable, it is said
to be untyped, and its ‘type’ will be denoted by U.

In addition to primitive types, structured and aggregated types like lists
(list), records, sequences (sequence), sets (set), and multisets will be as-
sumed. Cartesian products of primitive values and other self-explanatory no-
tations will be used for values of these types.

5.2.2 Type Invariants

Given a type T , a variable declaration x : T is understood to introduce the
intended type invariant that the value of x always belongs to the set of values
of type T ,

�(x ∈ T) . (5.6)

As a state invariant this cannot be explicitly expressed in a canonical
TLA expression. It is also unreasonable to assume that type invariants could,
in general, be effectively enforced just by declaring variables to be typed.

For this reason, type invariants (5.6) are assumed to be assertions about
the intentions of the specifier. Conditions x ∈ T are then assumed to be
included in the initial conditions, and their preservation as state invariants
gives additional proof obligations. Such proof obligations strengthen those
discussed in Sect. 3.5.6 (p. 91) even further, so that expressions are required
to be not only well defined but also type-correct in all reachable states. If type
invariants are violated, an action system is erroneous.

5.2.3 Scopes of Variables

In programming languages, the scope of a variable is usually restricted to a
given syntactic unit. For a human reader this indicates that the variable does
not ‘exist’ outside its scope in the sense that it could be accessed, or that its
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value would have any other relevance. Scopes also make it easier to manage
large name spaces.

Such aspects are also relevant in specifications. Statements in action bodies
have no block structure in the action language, but the individual states in
hierarchical finite-state structures determine natural scopes for variables. We
therefore allow variables to be declared ‘within’ given named states, in which
case they are said to be local to those states, and can be accessed only when
the system is in those states.

Syntactically, if an integer variable x, for instance, is local to state State,
its declaration will be included in the definition of state State as follows:

State = {. . . x : Z . . . } .

For clarity and unique identification of variables we adopt the convention that
a variable name can be prefixed by the state for which it is defined, as for
instance in State.x.

Within actions, a variable should not be referenced unless the system is in
the state for which the variable is local, and new values should be given only
to those variables that are local to the new state. Such constraints can be ex-
pressed as further state invariants, which are understood as further assertions
about the specification. An action system where these state invariants do not
hold is erroneous. For a specifier they give additional proof obligations.

5.2.4 Initial and Default Values

As another facility to be adopted from programming languages, variable dec-
larations are allowed to contain expressions for initial and default values, as
shown by the value 0 in

State = {. . . x : Z(0) . . . } .

For variables that ‘exist’ in the initial state, these expressions determine
their initial values. Non-initialized variables can have arbitrary initial values
of the associated types, provided that all other initial conditions are satisfied.
Prefixing by keyword const will indicate that the initial value is immutable,
or constant, in the sense that it cannot be changed in any action.

When a substate is entered,1 its local variables are not assumed to retain
the values they had when the state was last exited. Instead, the values of
the default expressions are then taken, unless explicitly specified otherwise in
the action. In the absence of default values, arbitrary values of the associated
types are taken in this situation. For these reasons, the effects of an action
cannot, in general, be seen just from the action body, without also considering
the types and default values of variables.

1Whenever a primed state name appears in an action body, this is interpreted to
denote an entry to that state, independently of whether this differs from the current
state or not.
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For simplicity, the variables that are local to a state are assumed to retain
their values when the state is exited, even though these values can no longer
be referenced in actions.

5.2.5 Discussion

Finite-state structures and declaration of variables extend the action language
with facilities that a programmer would probably expect a specification and
design language to possess. Of course, the conventions could have been de-
signed differently from what we have done here, without sacrificing the main
ideas of the approach. Some of the more complex possibilities could also have
been left out. In any case, it would have been misleading not to show the
kinds of problems that are encountered when the core of a formally defined
specification language is extended with convenient programming facilities that
have ‘obvious’ meanings.

As in programming languages, interactions between the different facili-
ties – like state transitions and default values, for instance – often lead to
complicated situations. Mechanical tools can, of course, cope with such com-
plications, but for humans they involve potential dangers.

Technically, these extensions have led to different kinds of possibilities for
erroneous action systems. In Chap. 3 we already discussed errors that arise
if state functions or state predicates are used in situations where their values
are not well defined. The facilities introduced here have increased essentially
the possibilities for such ‘run-time errors’.

To some degree, such errors can be revealed by static inspection, i.e., by
means traditionally used in compilers, but, in general, they are inherently
dynamic in nature, and their absence can be shown only by formal proofs or
fully exhaustive testing (when this is possible).

Comparing programs to specifications, we notice that an executable pro-
gram can be incomplete in the sense that it may lead to unpredictable results
or run-time errors if some assumptions are not satisfied during its execution,
whereas a specification does not have this possibility. In contrast, a specifica-
tion is expected to give explicit conditions under which it is well defined. In a
way, assertions are a bridge between these two worlds. When an operational
specification is simulated, assertions can be used to detect ‘run-time errors’,
whereas for a formal treatment they should be understood as state invariants
to be proved.

The main justification for introducing these kinds of facilities into a specifi-
cation language is that they make it easier for the specifier to express some in-
tended properties of the specification. In many situations the associated proof
obligations are also trivial. This involves, however, a potential trap, especially
because ‘trivial’ proof obligations are usually left implicit, unless mechanical
proofs are systematically carried out. The trap is that, if an operational spec-
ification does not satisfy the associated assertions – and is therefore erroneous
– a human reader may still be misled to trust in these intended properties.
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Review Questions

Question 5.2.1 What is meant by assertions?

Question 5.2.2 Is it possible to check type invariants by static inspection?

Question 5.2.3 What are the situations in which an action system is erro-
neous?

Question 5.2.4 Why may types and other convenient programming facilities
be misleading for a human reader?

Exercises

Exercise 5.2.1 Elaborate on the complexities caused by default values and
default substates in connection with entries to nested states.

5.3 Objects and Relations

Experience with object-oriented programming and design has convinced the
software-engineering community about the usefulness of the notions of ob-
jects, classes, and relations between objects. They seem to reflect in a natural
manner the ways in which we tend to organize our understanding of the world.

In this section we will introduce these notions to the action language in a
way that is suitable for specifications.

5.3.1 The State of an Object

As a first approximation, we understand an object as a collection of state vari-
ables, possibly including ones implicitly introduced by state declarations (i.e.,
finite-state structures). From this viewpoint, the notion of objects provides a
facility for partitioning the state of a system into smaller parts that consist
of variables in individual objects.

Each object c has a unique identity, which will be denoted by c.id. These
identities, together with a special value none, which denotes (the identity
of) a non-existing object, are assumed to be values that are contained in the
universal set Val of values, and the subset formed by them will be denoted
by ID, ID ⊆ Val.

The variables constituting an object are its local variables, also called its
attributes. The values of these variables determine the local state of an object.
As for notation, variable a within object c will be denoted by a prefixed name
c.a. Multiple prefixing can also be used. For instance, variable x that is local
to a named state S within object c could be denoted by c.S.a.
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The set of all state variables used in a specification consists of the local
variables of all objects, and of global variables that do not belong to any object.
To distinguish between the different uses of the word ‘state’, the state that
involves all state variables in a specification will be called the global state.2

5.3.2 Classes

The possibility for an arbitrary number of similar objects is one aspect of
scalability in specifications. This is made possible by the notion of a class.

In the following, a class is understood to be a set of objects with some
common characteristics. Each object belongs to some class, and – following
common programming parlance – is also said to be an instance of that class.3

The declaration of a class gives the attributes (local variables) that are avail-
able for all objects of the class. In agreement with the general philosophy of
state variables in TLA, we can assume that objects also have an infinite num-
ber of other variables that are not of interest to us. Similarly, we can assume
an infinite number of other classes that are not referred to in a specification.

As an example, class declaration

class C = {a : Z; state S∗
1, S2}

would declare that each object c ∈ C has a local integer variable c.a, and
local state predicates c.S1 and c.S2. Knowing only that object c is in class C

would not allow us to access any other variables that c may have.
The set of identities of objects in class C will be denoted by IDC. This

allows us to use typed variables that are intended to ‘refer’ to objects of a
given class only.

Ignoring multiple inheritance, we will assume in this chapter that different
classes are disjoint sets of objects, i.e., C �= D implies C ∩ D = ∅ for any two
classes C and D. With the more advanced aspects of object orientation to be
discussed in Chap. 7, this assumption will be removed.

5.3.3 The Size of a Class

In programming languages, variables need to be ‘created’ by declarations or
dynamic generation, whereas in TLA they are assumed to ‘exist’ throughout
all behaviors. Similarly, in object-oriented programming languages, objects

2Notice the heavily overloaded use of the word ‘state’. In TLA, state includes
the values of all possible state variables; the state variables used in a specification
determine the global state of a system; the state variables of an object determine
its local state; state declarations introduce finite-state structures with named states.
The word ‘state’ is also used synonymously to the states that satisfy given state
predicates.

3When multiple inheritance is used, an object may be an instance of several
classes.
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‘exist’ only after being created, and they can be destroyed when no longer
needed, whereas specifications need no such implementation-oriented facilities.
All classes and all objects can simply be assumed to exist throughout all
behaviors.

We adopt the convention that the number of objects in a class can be
given in the class declaration within parentheses after keyword class. Finite
sizes can be indicated in terms of integers and rigid variables. The possibility
for (countably) infinite classes is needed in specifications where unbounded
numbers of objects may be required during execution. This can be indicated
by specifying the size to be ∞.

With access to the local variables of an arbitrary object in a given class, an
infinite class gives, in some sense, simultaneous access to an infinite number of
variables. As an unimplementable facility this also gives possibilities that go
beyond effective computability. Consider, for instance, a function f : N → N

discussed in Sect. 3.5.8 (p. 94), for which no effective algorithm can determine
for an arbitrary x ∈ N whether there exists an n ∈ N such that x = f(n).
However, an infinite class C with local variables i and j can be specified so
that, for each n ∈ N, there is an object c ∈ C with c.i = n and c.j = f(c.i) in
the initial state. The algorithmically unsolvable problem could then be solved
for an arbitrary x ∈ N by ‘accessing’ all objects c ∈ C simultaneously with
the enabling condition

∃c ∈ C : c.j = x

of some action.
A more ‘normal’ way to use an infinite class C would model how a finite

but unbounded class can be used in object-oriented programming. All but a
finite number of objects c ∈ C are then always assumed to have local states
that are identical to each other, and can be interpreted as the state of the still
‘unborn’ objects in C.

5.3.4 Relations

Objects in a model often have various relations between each other. These may
be constant or immutable relations, which cannot be changed in executions,
or dynamic relations that can be modified in actions. In the following we will
use binary relations only.

To indicate that R is a (binary) relation between objects of classes C and
D, we write R : C × D. In the action language we will introduce it by a
declaration

relation R : C × D .

Constant relations that stay unchanged in all behaviors will be prefixed by an
additional keyword const.

Mathematically, R is a subset of the Cartesian product C×D of all ordered
pairs (c, d), c ∈ C, d ∈ D, i.e.,
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Fig. 5.3. Illustration of a relation
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R ⊆ C × D .

For pairs in R we write c·R·d, that is,

c·R·d ∆
= (c, d) ∈ R . (5.7)

Figure 5.3, where the small boxes denote objects, illustrates such a relation
R, which consists of pairs (a, e), (a, f), and (b, e).

In terms of explicit state variables, a relation R : C × D can always be
represented as a global variable of type

set (IDC × IDD) .

More economical representations can often be used for special classes of rela-
tions.

5.3.5 Special Classes of Relations

Some specific kinds of relations are often useful in specifications, and one may
also wish to combine relations with each other. To give the reader some idea
about the facilities that a specification language could provide in this respect,
we elaborate on this topic in this subsection.

Mappings

Important special cases of relations can be distinguished by specifying the
number of objects that can be in a given relation to the same object. For
instance, by writing

relation (∗)·R·(1) : C × D

we can specify that for each c ∈ C there is exactly one d ∈ D for which c·R·d,
and for each d ∈ D there are zero or more such c ∈ C. In this connection, an
asterisk (∗) will stand for ‘zero or more’, and a plus sign (+) will stand for
‘one or more’. In addition, lower and upper bounds for the numbers can also
be given.
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Mathematically, the above declaration declares R as a (total) function that
maps each object in C into a unique object in D. Other important special cases
are partial functions,

relation (∗)·R·(0..1) : C × D ,

which map each object in C to at most one object in D, injections

relation (0..1)·R·(1) : C × D ,

which never map two different objects in C to the same object in D, and
bijections

relation (1)·R·(1) : C × D ,

which are one-to-one mappings.
When relation R is known to be (any kind of) a function, it is often con-

venient to use the functional notation d = R(c), instead of c·R·d.
Notice that for dynamic relations the above properties should be under-

stood as assertions, and an action system is erroneous if it does not preserve
such properties in all situations.

Derived Relations

For two relations R1 : C × D, R2 : D × E, the combined relation R1 ◦ R2 is
defined as

c·(R1 ◦ R2)·d ∆
= ∃e ∈ D : (c·R1 ·e ∧ e·R2 ·d) .

Obviously, if both R1 and R2 are functions, partial functions, injections, or
bijections, then so is R1 ◦ R2.

Since relations are sets of pairs, the union and intersection of two relations
R1, R2 : C × D between the same classes can also be formed:

c·(R1 ∪ R2)·d ∆
= c·R1 ·d ∨ c·R2 ·d ,

c·(R1 ∩ R2)·d ∆
= c·R1 ·d ∧ c·R2 ·d .

A relation R : C×C between objects of the same class C gives rise to power
relations Ri. Using IdC : C × C to stand for the identity relation in C,

IdC
∆
= {(c, c) | c ∈ C} ,

these can be defined as

R0 ∆
= IdC ,

Ri+1 ∆
= R ◦ Ri, for i ≥ 0 ,

R+ ∆
=

⋃

i>0

Ri ,

R∗ ∆
= R0 ∪ R+ .
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Relations R+ and R∗ are called the transitive closure and the reflexive transi-
tive closure of R, respectively.

Each relation R : C × D also gives rise to an inverse relation R−1 : D × C

defined as
d·R−1 ·c ∆

= c·R·d .

Topological Relations

Relations R : C×C can be used to define topological structures among objects
x ∈ C. For simplicity, we assume here that C is finite.

Given a relation R : C × C, an object c ∈ C is a root of R if it satisfies the
condition

RootR(c)
∆
= ¬∃d ∈ C : d·R·c .

Correspondingly, c is a leaf of R if it satisfies

LeafR(c)
∆
= ¬∃d ∈ C : c·R·d .

For an illustration, see Fig. 5.4.
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The following conditions on R : C × C now define some useful topologies
for a finite class C:

• Relation R is a dag relation4 if it is acyclic, i.e.,

∀c ∈ C : ¬ c·R+ ·c .

• A dag relation R is a tree relation if R−1 is a partial function and R has
exactly one root.

• A tree relation R is a sequence relation if it has exactly one leaf.
• Relation R is a ring relation if it is a bijection satisfying

∀c, d ∈ C : c·R+ ·d .

A ring has no leaves and no roots.
4The word ‘dag’ comes from ‘directed acyclic graph’.



142 5 Basic Language Facilities

When a relation is assumed to generate one of these topologies, we will
prefix its declaration with the corresponding attribute. Obviously, for dynamic
relations these topological properties generate assertions that are not satisfied
by erroneous specifications.

Review Questions

Question 5.3.1 Review the different uses for the word ‘state’.

Question 5.3.2 Why do we need to deal with infinite classes?

Question 5.3.3 What are objects and relations from the viewpoint of state
variables in behaviors?

Question 5.3.4 What kinds of assertions may be associated with relations?

5.4 Parameterized and Multi-object Actions

For objects of the same class it is natural to assume that the actions that
are relevant for them are also similar. In object-oriented programming such
actions are given as ‘methods’ defined for all objects of a class. For the speci-
fication of collective behaviors in object systems, a more appropriate level of
abstraction is provided by the notion of multi-object actions.

Technically this leads to parameterization of actions by the objects that
are needed for their execution. Without fixed class sizes, specifications then
also become generic patterns of object systems, which can be instantiated in
different ways. Effective use of such patterns requires, however, additional
support for object orientation, which will be the topics of Chap. 7.

5.4.1 Action Parameters

Actions in the action language can be parameterized. For instance, an action
with an integer parameter x would be written in the format

A(x : Z) : g(x)→ b(x) ,

where both the guard g(x) and the body b(x) could depend on the parameter
x. Such an action would be enabled for any parameter value x for which
the guard is true, and its execution would then execute the body for such a
parameter value x.

When a parameterized action is executed, the selection between differ-
ent parameter values, for which the action is enabled, is nondeterministic.
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Parameters therefore provide a mechanism for nondeterminism within indi-
vidual actions, without a need to relax the convention that action bodies are
given as deterministic ‘assignments’. In addition, parameters also give con-
venient ‘handles’ to control such nondeterminism by constraints that can be
appended to action guards at later stages.

A natural application for action parameters is in the modeling of input and
output. When the environment, for instance, gives input to the system, non-
deterministic selection of parameter values corresponds to lack of information
about the values to be chosen by the environment for input.

5.4.2 Action Participants

Since object identities are also values in Val, actions can also be parameter-
ized by them. The values chosen for such parameters will be called action
participants.

This provides a convenient mechanism to define similar actions for all
objects of the same class. With more than one object parameter, an action is
a multi-object action. As an example, consider an action

A(c, d : C) : g(c, d)→ b(c, d)

with two participants, c and d, of class C.5 To make a distinction between the
formal parameters in an action and the actual participant objects for which
the action is executed, the term role will be used for the former. That is, the
above action has two participant roles, for which actual participant objects are
chosen nondeterministically from among those that satisfy the guard g(c, d).

To avoid problems in aliasing, no object is allowed to take more than one
role in an action at the same time. Therefore, the guard g(c, d) in the above
example is assumed also to contain an implicit conjunct c �= d, which we take
as an abbreviation for c.id �= d.id.

Encapsulation of ‘methods’ is an important principle in object orientation,
meaning that the local state of an object can be modified only by the object
itself. For multi-object actions this generalizes in a natural manner into the
requirement that the local state of an object can be modified only in actions
in which the object is a participant. Syntactic checks are sufficient to enforce
this requirement.

5.4.3 Intuition for Action Execution

Intuitively, there are two extreme possibilities to think about the execution of
multi-object actions.

5For simplicity, we introduce notation only for a fixed number of participants,
although variable numbers of participants would be useful in some situations.
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On one hand, one can think of a global scheduler, which selects actions
that are enabled for some participants and other parameter values, and then
invokes their execution. In this interpretation objects are treated as passive
data structures.

Intuitively, a more appealing possibility is to think of objects as active
execution agents, and that actions are executed jointly by their participant
objects. Obviously, an intermediate interpretation with both active and pas-
sive objects is also possible.

When objects are considered to be active agents, some communication and
handshaking mechanism has to be postulated by which objects can establish
that an action is enabled for them, agree on the possibly required parame-
ter values, and get committed to its execution. During action execution, the
participants may still continue communicating with each other, in order for
each of them to change its own local state as specified by the action body, but
other objects can no longer affect this in any way.

Execution by active objects will be discussed in more detail in Chap. 9 on
distributed action systems.

5.4.4 Multi-object Actions in Specifications

When objects are understood as active execution agents, multi-object actions
provide an implicit communication mechanism for them. Therefore, explicit
communication mechanisms are not needed, as is the case in conventional
approaches to object orientation.

In contrast to a conventional ‘individualistic’ view of objects, multi-object
actions provide an inherently collective view of a system, which is suitable for
the specification of collective behaviors in closed-system models. Single-object
‘methods’, on the other hand, are suited for describing objects as independent
open systems, which supports the idea of reusable object implementations.
The difference is illustrated in Fig. 5.5.6

With multi-object actions, object-oriented specifications can be given in
an operational form but still at a high level of abstraction. This makes it
possible to specify what the objects should do together (action bodies), and
in which situations (action guards), without telling how they should make the
required decisions, or how they should communicate with each other in doing
this. Obviously, the how questions have also to be addressed at some point
during the design, but implementation-oriented design decisions should not
be made too early, and a specification language needs to be designed with
this in mind.

6In graphical illustrations we adopt the convention that rectangles denote objects
or classes, and ellipses denote actions.
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Fig. 5.5. Single-object methods in open systems vs. multi-object actions in closed-
system models

5.4.5 Absence of Object Names

For simplicity, no global naming system will be assumed for objects. That is,
objects will not be given names by which they could be referenced. Whenever
an object needs to be accessed (in an action), it needs to be selected from its
class by the values of its attributes, or by the relations in which it stands to
other objects. If several objects satisfy the selection criteria, then any of them
can be chosen.

Within an action, the formal names (roles) given to its participants are
local to this action. Two actions can be ensured to have the same object as
a participant only by making sure that it can be uniquely identified by its
attributes and relations.

5.4.6 Quantification and Relations in Actions

In addition to referencing local variables of participants, an action can also
involve global expressions, i.e., global variables and expressions that are quan-
tified over all objects in given classes. In particular, quantification over classes
makes it easy to specify enabling conditions in an implicit form. For instance,
if a participant c ∈ C is needed with the smallest value in attribute c.a, a
quantified expression

∀d ∈ C : d.a ≥ c.a

can be used to select it.
This kind of global expressions makes an action also depend on other

objects besides its participants. To support the intuition that only participant
objects (and global variables) are needed during action execution, the use of
such expressions will be limited to action guards only.
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Interpreted as global variables, relations can also be used in actions, both
in guards and in bodies. When a relation R is modified in an action, we will
indicate (c, d) ∈ R ′ by writing

c·R ′ ·d .

The assumption is that only those changes are made in R that are explicitly
indicated in this way. To avoid conflicts, and to keep the operational interpre-
tation clear, derived relations cannot appear primed in actions.

As an example, if R is a relation, removing the pair (c, d) from it and
adding (c, e) to it can be expressed as

· · ·
∧ c·R·d→ ¬(c·R ′ ·d)

∧ c·R ′ ·e
· · ·

In order to use c, d, and e in this manner, they must all be participants in
the action. Quantification makes it, however, possible to modify relations also
for other objects than participants, for instance by writing a conjunct

∀c, d ∈ C : ¬(c·R ′ ·d)

in the body. Notice that this does not make an action depend on all objects
in C, since this modifies only the value of a global variable where relation R

is assumed to be represented.

Review Questions

Question 5.4.1 Explain the intuition behind multi-object actions when the
participants are considered as active execution agents.

Question 5.4.2 What are the advantages of multi-object actions in specifi-
cations?

Question 5.4.3 How can one make sure that two actions have the same
object as participant?

Exercises

Exercise 5.4.1 Discuss the problems that would arise if an object could
participate in an action in multiple roles at the same time.
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5.5 Formalization of Multi-object Actions

Multi-object actions were introduced above with the execution model of action
systems in mind. In this section we analyze their logical meaning. This also
leads to more refined needs in expressing fairness requirements in the action
language.

5.5.1 Quantified Action Expressions

Let A(x) be an action expression that contains a rigid variable x, and let A

denote the expression obtained from it by existential quantification,

A
∆
= ∃x : A(x) .

Action A can then be understood as a parameterized action, where the pa-
rameter x can be selected arbitrarily.

Substituting x in A(x) by some value a ∈ Val gives an instance A(a) of
A, also called an instantiation of A. Every A step in a behavior is then an
A(a) step for some instance A(a).

Action A being the disjunction of all its instantiations, its enabling condi-
tion is the disjunction of the enabling conditions of these instantiations,

Enabled A
∆
= ∃x : Enabled A(x) .

5.5.2 Mapping Between Actions

Parameterized actions in the action language can now be mapped into exis-
tentially quantified action expressions. For instance, action

A(x : Z) : g(x)→ b(x)

would correspond to expression

A
∆
= ∃x ∈ Z : (g(x) ∧ b(x) ∧ StutterY) ,

where Y denotes the set of those variables of the specification that are not
modified in A. The enabling condition of this action would be

Enabled A
∆
= ∃x ∈ Z : g(x) .

With participant objects, i.e., with parameterization by objects, this cor-
respondence also needs to honor the requirement that no object is allowed to
take more than one role in an action at the same time. Therefore, if C is a
class, then action
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A(c, d : C) : g(c, d)→ b(c, d)

would correspond to expression

∃c, d ∈ C : (c �= d ∧ g(c, d) ∧ b(c, d) ∧ StutterY) ,

where Y again denotes those variables of the specification that are not modified
in the action. This time, Y consists of

• those global variables that are not modified,
• those local variables in the actual participants c and d that are not mod-

ified,
• all local variables of all other objects in class C, and
• all local variables of objects in other classes than C.

5.5.3 Fairness for Multi-object Actions

A parameterized action with participants and other parameters can be un-
derstood as a pattern for different instances of an action, one instance for
each selection of participants and other parameter values. As a consequence,
there are several possibilities to associate meaningful fairness requirements
with respect to a parameterized action in the action language.

As an example, let A(c : C; d : D) be an action in the action language,
with two participant roles c and d, and let ∃c, d : A(c, d) be the corresponding
logical action. There are now different kinds of fairness requirements that
one may wish to associate with A. Already with strong fairness we have the
following alternatives:

• If no distinction needs to be made between executing different instances
of A, a natural strong fairness requirement would be

SF(∃c, d : A(c, d)) . (5.8)

Under this requirement, if A is repeatedly enabled for any combination of
participants, it will eventually be executed for some participants.

• If distinction needs to be made between different participants in role c, we
may require strong fairness separately with respect to each object c ∈ C

in this role:

∀c : SF(∃d : A(c, d)) . (5.9)

Under this requirement, if A is repeatedly enabled for the same object in
role c, it will eventually be executed for this object in role c.

• Analogously, if distinction needs to be made between the cases where the
second participant is different, we may require strong fairness with respect
to objects d ∈ D in the second role:
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∀d : SF(∃c : A(c, d)) . (5.10)

Then, if A is repeatedly enabled for the same object in role d, it will
eventually be executed for this object in role d.

• Finally, making a distinction between all instances of A would lead to
strong fairness with respect to object pairs c ∈ C, d ∈ D,

∀c, d : SF(A(c, d)) . (5.11)

Then, if A is repeatedly enabled for the same pair of objects, it will even-
tually be executed for this pair.

Obviously, similar alternatives would also be obtained for weak fairness
properties.

5.5.4 The Effect of Infinite Classes

In the above example, fairness requirements (5.9)–(5.11) generate conjunc-
tions of several fairness formulas. With finite classes their numbers are also
finite. In the finite case the situation is also such that each of (5.9) and (5.10)
implies (5.8), and (5.11) implies both (5.9) and (5.10). Similar implications
do not, however, hold for the corresponding weak fairness properties.

With infinite classes the situation is slightly different. Firstly, the above
implications between strong fairness properties (5.8)–(5.11) no longer hold in
general (see Exercise 5.5.2). Secondly, (5.9)–(5.11) now generate conjunctions
of (countably) infinite numbers of fairness formulas. However, as shown in
Exercise 3.5.2 (p. 100), the resulting fairness conditions are still feasible.

The parameters for which fairness is required can also be non-participant
parameters. To ensure the feasibility of the conjuncted fairness conditions it
is, however, essential to require that the ranges of such parameters are either
finite or countably infinite.

5.5.5 Expressing Fairness Requirements

As is evident from the above, prefixing action names with SF or WF is no longer
sufficient for expressing the variety of fairness requirements that we would like
to express. A natural solution is to allow fairness prefixes also on participants,
in order to express fairness requirements with respect to them. Some care is,
however, needed in defining what this exactly means, in order to maintain the
property that adding of prefixes cannot change any unfair behaviors into fair
behaviors.

The convention that we adopt is first explained in terms of the above
example. For simplicity, let XF stand for X-fairness, i.e., either strong or
weak fairness, depending on whether X is replaced by S or W.

Prefixing the action name itself,
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XFA(c : C; d : D) ,

will require X-fairness for action A, that is

XF(∃c, d : A(c, d)) .

Prefixing a participant, say c,

A(XFc : C; d : D) ,

will require X-fairness for this participant, that is

∀c : XF(∃d : A(c, d)) .

Prefixes on both participants will impose separate fairness requirements
for each of them and, in addition, X-fairness for all participant pairs,

∀c, d : XF(A(c, d)) ,

where X is now either S or W, depending on whether both prefixes are SF or
not.

More generally, if (x, y) denotes an arbitrary partitioning of all parameters
(i.e., both participant and non-participant parameters) in action A into two
subsets x and y, such that all parameters in x are prefixed by either SF or
WF, and those in y may or may not have such prefixes, then the fairness
requirement

∀x : XF(∃y : A(x, y)) (5.12)

is assumed in the following situations:

• x is empty, and the action name is prefixed by XF,
• x contains only parameters prefixed by SF, and X is S,
• some of the parameters in x are prefixed by WF, and X is W.

Review Questions

Question 5.5.1 Why did we need to reconsider how fairness requirements
are expressed in the action language?

Exercises

Exercise 5.5.1 What is the difference between the meanings of SFA(c : C),
A(SFc : C), and SFA(SFc : C)? Does any of them imply any other of them?

Exercise 5.5.2 Prove the implications and non-implications between fair-
ness properties discussed in Sect. 5.5.4 (p. 149).

Exercise 5.5.3 Explain the meaning of fairness markings with the assump-
tion that only strong fairness is used, and all classes are finite.
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5.6 Dealing with Quantification

A price that we have to pay for the way we use classes in action systems is an
extensive need for quantified expressions in TLA, with quantification carried
over classes. This means that quantified rigid variables play an important role
in formal treatment of action systems. Therefore, we discuss the use of rigid
variables in more detail in this section.

5.6.1 Free Variables

A rigid variable x that occurs in an expression E(x) and is not bound in it by
a quantifier is said to be a free variable in E(x). Substituting all free variables
in an expression by some values in Val gives an expression that is an instance
(or instantiation) of that expression.

An intended type T may be given for a free variable, as in

x ∈ T : E(x) .

Intuitively, this constrains the values by which x can be substituted into those
that belong to T . For completeness it is assumed, however, that any substitu-
tion is possible, but it will be irrelevant what the resulting expression means
for ‘type-incorrect’ substitutions. Since object identities are also values in Val,
an intended type may also be a class.

5.6.2 Quantifiers

An expression can be quantified over the type of a free variable in it. Universal
quantification is denoted by ∀ (for all), and existential quantification by ∃
(there exists).

For instance, if P(x) is a state predicate with a free variable x ∈ C, then

∀x ∈ C : P(x)

and
∃x ∈ C : P(x)

are quantified state predicates with their obvious meanings. These are, in fact,
considered to be the same as

∀x : (x ∈ C ⇒ P(x))

and
∃x : (x ∈ C ∧ P(x)) ,

respectively, which means that typing of rigid variables is just a ‘decoration’
indicating intended types.
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When the intended types can be understood from context, they will be
omitted from expressions in the following, abbreviating the above expressions,
for instance, into ∀x : P(x) and ∃x : P(x).

Quantification can appear in all kinds of temporal expressions. In particu-
lar, quantified action expressions were utilized in Sect. 5.5 in defining actions
as patterns that are applicable to all objects of the same class(es).

As was already mentioned in Chap. 3, existential and universal quantifiers
are each other’s duals,

∃x : E(x) ⇔ ¬∀x : ¬E(x) .

It can easily be checked that this also holds for the above interpretation of
typing:

∃x ∈ C : E(x) ⇔ ∃x : (x ∈ C ∧ E(x))⇔ ¬∀x : ¬(x ∈ C ∧ E(x))⇔ ¬∀x : (x /∈ C ∨ ¬E(x))⇔ ¬∀x : (x ∈ C ⇒ ¬E(x))⇔ ¬∀x ∈ C : ¬E(x) .

For simplicity, a single quantifier symbol will be used to stand for any
number of successive quantifications of the same kind, as for instance in

∃x, n : x.a = n .

Variables that are quantified in an expression are said to be bound by
the quantifier. For instance, variable x that is free in P(x) is bound by the
quantifier ∀ in ∀x : P(x).

An expression may have a nested structure with several levels of quan-
tification. Analogously to conventions with block structure in programming
languages, a variable is always understood to be bound by the closest enclosing
quantification with the same variable name.

Obviously, the meaning of an expression is independent of the names that
are used for its bound variables, provided that no name clashes arise with free
variables or with other bound variables.

5.6.3 Quantified Operators

In predicates, ∀x and ∃x correspond to quantified conjunction
∧

x and quanti-
fied disjunction

∨
x, respectively. When rigid variables occur in state functions,

quantified operators can also be used. For instance, if x ∈ C : f(x) is a state
function, then ∑

x∈C

f(x)
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denotes the sum of f(x) over all objects x ∈ C, and

max
x∈C

f(x) , min
x∈C

f(x)

denote the maximum and the minimum value of f(x), respectively, over all
objects x ∈ C.

For such quantification to make sense, the quantified operator needs to be
a binary operator that is both associative and commutative. In order to be
defined for an empty class, there must also be a unique zero element for the
operator. For conjunction, disjunction, addition, and multiplication, such zero
elements are T, F, 0, and 1, respectively. Since max and min have no natural
zero elements in R, they are undefined for empty classes.

A special case of a quantified operation is the size of a class C, which will
be denoted by |C|, and is defined as

|C|
∆
=

∑
x∈C

1 .

Correspondingly, the number of objects x ∈ C satisfying a given condition
P(x) will be denoted by |{x ∈ C | P(x)}|:

|{x ∈ C | P(x)}|
∆
=

∑
x∈C

(if P(x) then 1 else 0) .

In connection with infinite or empty classes, quantified state functions
must be used with care, in order to avoid situations where their values could
be infinite or undefined. For universal and existential quantification such prob-
lems do not arise.

5.6.4 Proof Rules for Quantification

The proof rules of Chap. 4 are all still valid. Whenever a free variable is
involved in the premises and the conclusion, its intended type has, however,
to be the same in all of them.

Similarly to non-temporal logical connectives, proof rules for quantifiers
can be taken from non-temporal logic. Only one additional rule for the ‘leads
to’ operator will be introduced here, but, for completeness, other quantifier
rules will also be briefly discussed in this subsection.7 It will be assumed that
the intended types of the quantified variables are always given although, for
simplicity, they will be omitted from these rules. Also, although only a single
quantified variable x is written, it may stand for several, and the intended
classes of these may be different.

7A reader who has skipped Chap. 3 may wish to skip this subsection also.
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Basic Laws

Assuming that no naming clashes will arise, quantifiers can be pushed to the
outside of conjunctions and disjunctions. That is, we have laws

E ∧ ∀x : F(x) ⇔ ∀x : (E ∧ F(x)) , (5.13)
E ∨ ∀x : F(x) ⇔ ∀x : (E ∨ F(x)) , (5.14)
E ∧ ∃x : F(x) ⇔ ∃x : (E ∧ F(x)) , (5.15)
E ∨ ∃x : F(x) ⇔ ∃x : (E ∨ F(x)) , (5.16)

where x is assumed not to occur free in E.
The order of universal quantification and the box operator (�) can always

be exchanged,

�∀x : E(x) ⇔ ∀x : �E(x) , (5.17)

which also gives the dual law for existential quantification and the diamond
operator (�):

�∃x : E(x) ⇔ ∃x : �E(x) . (5.18)

Table 5.1 gives rules for introduction and elimination of quantifiers. The
first of them simply states that, if E(x) is true for an arbitrary x, then it is
true for all x, and the second rule is the converse of this. The third rule states
that, if E(x) is true for an arbitrary x, then there must exist such an x, unless
the class of x is empty. In the fourth rule, the second premise is that, for an
arbitrary x, E(x) would imply F. Conclusion F can be made if such an x exists.

Table 5.1. Quantifier rules

� � � �

∀ �
�

� � � �
∀�

�

� � � �
� � � �

∃ �
� T

� � � �

∃ �
�

� � � �

∃ �
�

� � � �
� � � � �

� �

� not free in �

�

The second and third rules can be slightly generalized, but this needs a
notation for substitution for free variables to be given below.

Notation for Substitution

A notation is needed to express that a free variable x in a formula E(x) is
replaced by another variable, say y.

No problems arise if it is known that y does not occur free in E(x). For
instance, if E(x) is defined as
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E(x)
∆
= x ∈ C : x.a = 0 ,

then we can simply write E(y) to stand for y ∈ C : y.a = 0. Replacing y again
by x would then obviously give the original E(x).

The situation is, however, different if E(x) also contains y as a free variable,
as for instance in

E(x)
∆
= x, y ∈ C : x.a = y.a .

Obviously, replacing x first by y, and then y by x, would no longer give the
original E(x).

To avoid misleading expressions, we therefore write E(x)[y/x] to express
that all free occurrences of x in E(x) are replaced by y. When this notation
is used, we will always assume that no naming conflicts will arise, i.e., that
the new occurrences of y in E(x)[y/x] are also free, and not bound by a
quantification of y within the expression.

With this notation, the second and third rules of Table 5.1 can be gener-
alized into those given in Table 5.2. In the first of these rules, for instance,
expression ∃x : E(x) can now contain free occurrences of y. For instance, if
E(x) is defined as

E(x)
∆
= x.a = y.b ,

the rule allows us to conclude from ∀x : x.a = y.b that y.a = y.b.

Table 5.2. Quantifier rules with substitution

∀�
�

� � � �
� � � � � � � � �

∃�
� T

� � � � � � � � �

∃�
�

� � � �

Case Rules

If P1∨· · ·∨Pn is known to be true, and Pi ⇒ Q holds for each i, then ordinary
non-temporal rules allow us to make the conclusion that Q is true. In other
words, if there are n possible cases, and Q is true for each of these, then Q

must be true.
The rule for eliminating existential quantifiers (fourth rule in Table 5.1)

can be understood as a variant of this, where the cases Pi are replaced by
E(x) for arbitrary x ∈ C, and Q is replaced by F. Reformulated as the first
rule in Table 5.3, we call it a case rule for implication.

Similar reasoning also applies to the ‘leads to’ operator (�). The case rule
in Table 4.14 (p. 116) allows the deduction that, if Pi � 〈A〉 is true for each
i, then also Pi ∨ · · · ∨ Pn � 〈A〉 is true. Analogously to the case rule for
implication, we now have a similar rule for the ‘leads to’ operator, given as
the second rule in Table 5.3.
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Table 5.3. Case rules for implication and ‘leads to’

� � � � �
� �

� not free in �� ∃�
�

� � � � � � �
�

� � �
� 〈 � 〉 �

� not free in
�

� ∃�
� �

� � � �
� 〈 � 〉

5.6.5 Example: Simple Exchange Sort

Finally, a simple example is discussed to illustrate parameterized actions and
their effect on reasoning.

Problem and its Solution

Consider a sequence of processes p1, . . . , pn, n ≥ 1, connected to each other as
shown in Fig. 5.6, so that process pi can execute actions together with either
one of its immediate neighbors pi−1 (when i > 1) and pi+1 (when i < n)
only. Each pi has an integer variable xi, and the numbers in these variables
should be rearranged into a non-descending order x1 ≤ · · · ≤ xn.

� � � � · · · � �

� � � � � �

� � � � � � � � � � � �

The root of
� � � � The leaf of

� � � �

Fig. 5.6. A sequence of processes

Processes pi can be modeled as objects of class P, with a sequence relation
Next, declared by

class (n) P = {x : Z} , n > 1 ,

const sequence relation (0..1)·Next·(0..1) : P × P .

The root of the sequence now corresponds to process p1, and the leaf to pn.
To allow the exchange of neighboring numbers that are in the wrong mu-

tual order, the following action is introduced, with two neighboring processes
as its participants:

WFExchange(p, q : P) : p·Next·q
∧ p.x > q.x→ p.x ′ = min(p.x, q.x)

∧ q.x ′ = max(p.x, q.x) .

Since this is the only action, its fairness assumption reflects mere fundamental
liveness, which is obviously sufficient to get the numbers eventually sorted.
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Safety Properties

Three crucial safety properties can be formulated for this system.
Firstly, the topological structure must remain unchanged,

steady Next . (5.19)

Being enforced by the keyword const for the relation Next, a static check
is sufficient to verify this. Therefore, no proof technique is needed for this
property.

Secondly, the collection of numbers r.x, r ∈ P, stays unchanged. Defining
state function N as

N
∆
=

∑
r∈P

{r.x} ,

where summation denotes multiset union, this can be expressed as

steady N . (5.20)

This would also imply that all p.x are always integers, as asserted by the
associated type invariant. Intuitively the satisfaction of (5.20) is obvious, since
each exchange only exchanges two numbers in N.

Thirdly, each execution of an action decreases the ‘unsortedness’ of the
numbers. The disorder of the numbers can be measured by the following
integer-valued state function f, which counts the number of process pairs
whose numbers are in the wrong mutual order:

f
∆
=

∑
r∈P

|{s ∈ P | r·Next+ ·s ∧ r.x > s.x}| .

Obviously, f ∈ N by definition, the numbers are sorted if f = 0, and the desired
safety property is

�[f ′ < f] . (5.21)

The satisfaction of this property is also obvious, since each execution of action
Exchange improves the order.

Proving Safety Properties

Although these safety properties are all obvious, we use them as an example
to see how multi-object actions affect formal proofs.

In proving (5.20) with the step invariant rule, the crucial step is to show
that action expression

∃p, q : Exchange(p, q) ⇒ N ′ = N

is an identically true action that is satisfied by any step. By the case rule for
implication (Table 5.3 on p. 156), it is now sufficient to prove that



158 5 Basic Language Facilities

Exchange(p, q) ⇒ N ′ = N

is satisfied by any step.
To show this we notice that the multiset union N is quantified over the

class to which both p and q belong, and N can therefore be expressed as

N = {p.x} + {q.x} +
∑

r∈P\{p,q}

{r.x} .

Since an action can modify the local states of its participants only, the third
term necessarily has the same value in N and N ′, and we only need to show
that

Exchange(p, q) ⇒ {p.x} + {q.x} = {p.x ′} + {q.x ′} ,

which can easily be checked.
Checking of (5.21) is left as an exercise to the reader (Exercise 5.6.4).

Liveness Property and its Proof

The crucial liveness property in this example is that the unsortedness (if there
is any) will always decrease, i.e.,

f = a > 0 � 〈f ′ < a〉 . (5.22)

Since f ∈ N, the well-founded ordering rule (Table 4.13, p. 116) then gives

f > 0 � 〈f ′ = 0〉 ,

which means that
T � f = 0 ,

i.e., that the numbers will eventually be sorted. On account of (5.21) they will
then also continually stay sorted.

The weak fairness rule (Table 4.11, p. 113) can be used to prove (5.22), by
choosing A, P, and B in it as follows:

A : ∃p, q : Exchange(p, q) ,

P : f = a > 0 ,

B : f ′ < a .

Review Questions

Question 5.6.1 What is the meaning of the ‘type decorations’ in quantified
expressions ∀x ∈ C : E(x) and ∃x ∈ C : E(x)?
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Exercises

Exercise 5.6.1 Applying the first rule in Table 5.2 on p. 155 (elimination of
∀) with E(x) as

∃z : z.a = x.a + y.a ,

what is the premise and what is the conclusion?

Exercise 5.6.2 Discuss the application of the second rule in Table 5.2 on
p. 155 (introduction of ∃) with E(x) as

x.a = y.a .

Exercise 5.6.3 If condition p.x > q.x were changed into p.x ≥ q.x in the
guard of action Exchange in Sect. 5.6.5 (p. 156), would this have any effect
on the crucial properties?

Exercise 5.6.4 Prove invariant (5.21) in Sect. 5.6.5 (p. 157).

Exercise 5.6.5 Prove property (5.22) in Sect. 5.6.5 (p. 158).

Exercise 5.6.6 Modify the example in Sect. 5.6.5 (p. 156) so that each pi

enters a special final state when it is no longer needed for sorting.
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Fundamentals of Design Methodology

Non-trivial specifications cannot be derived or understood in one piece: they
have to be constructed incrementally, possibly from several component mod-
ules that can be inspected separately. Also, there is no logically clear border-
line between specification and design: similar design steps can be used both in
incremental specification, where specifications are formulated in incremental
steps, and in stepwise refinement, where implementation-oriented decisions
are imposed on an implementation-independent specification.

This chapter focuses on the theoretical basis for incremental design of
closed-system specifications, and on the kind of modularity supported by this
basis. It is characteristic to this approach that we are not only interested in
the action system that results from an incremental design process, but also in
the intermediate levels involved. The resulting specifications therefore have a
layered structure, where each level adds another layer to the specification. For
simplicity, we will use the term layer to refer not only to the properties added
in a step, but also to the whole action system produced by the step.

When a new layer T is constructed, some earlier layers S1, . . . , Sk can be
utilized as its basis by importing them to T. Such a step will usually be required
to produce a refinement of each imported layer Si, by which we mean logical
implication1

T ⇒ Si

in terms of TLA.
The resulting layered structure is in some sense orthogonal to conventional

modularity. Since each layer is a closed-system model of global behaviors,
structuring in terms of them supports aspect-oriented specification, where an
individual step addresses crosscutting concerns, which cut across several com-
ponents in an eventual implementation.

1We continue using different fonts for action-language specifications and the cor-
responding TLA expressions. The strict refinement relation, i.e., logical implication,
will be relaxed in Sect. 6.4 in ways that make it possible to analyze the relevance of
those properties that are not preserved.
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The plan for this chapter is as follows:

• Section 6.1 introduces superposition, by which a new layer of properties
can be added to a closed-system specification in an intuitively natural
manner.

• When different aspects of a specification are addressed in independent
refinement paths, the views provided by them need to be synthesized or
composed. In Sect. 6.2, composition of specification layers is introduced as
simultaneous superposition on each of them.

• The resulting superposition-based design method is discussed in more de-
tail in Sect. 6.3.

• Since pure superposition has its limitations, some possibilities to relax the
associated requirements are introduced and analyzed in Sect. 6.4.

• Finally, the techniques introduced in this chapter are illustrated by two
non-trivial examples in Sects. 6.5 and 6.6.

6.1 Refinement by Superposition

The basic facility for refinement steps is superposition, which is a technique
for adding or superposing new properties on imported specification layers.

6.1.1 Refinement of Actions

In terms of logic, an action B is a refinement of action A if every B step is
also an A step, i.e., if action implication

B ⇒ A (6.1)

is identically true.

Example

Suppose A,

A(c : C; x : Z) : c.a > 0→ c.a ′ = c.a + x ,

is an action given in layer S, and T is a layer that imports S, extending the
class C with another local variable b. By writing in layer T

B(c : C) : S.A(c, 5)

∧ c.b = c.a→ c.b ′ = 0 ,
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we understand that action A of layer S is refined in layer T into action B, where
the parameter x has been fixed as 5, the guard has been strengthened with
condition c.b = c.a, and another assignment c.b ′ = 0 has been appended to
the body. As a result, we have then obtained the following action B in layer T:

B(c : C) : c.a > 0

∧ c.b = c.a→ c.a ′ = c.a + 5

∧ c.b ′ = 0 .

This action clearly implies the original action A of layer S, i.e.,

∃c ∈ C : B(c) ⇒ ∃c ∈ C, x ∈ Z : A(c, x) .

Discussion

More generally, if A(x) is an action in specification layer S, and x stands for
its participants and other parameters, a refinement of A(x) can be given in
the form

B(y) : S.A(z)

∧ · · ·→ · · · ,

where y stands for the participants and other parameters of B, S.A(z) is an
instance of action A(x), where the formal parameter list x has been replaced
by a list z of actual participants and parameter values, and the rest gives
additional guarding conditions as well as assignments to such variables that
were not involved in layer S. The guard (body) of the resulting action B con-
sists of the guarding conditions (assignments) in S.A(z), together with those
given in the refinement. Since the new assignments are restricted to the newly
introduced variables, no conflicting assignments can arise, and implication

∃y : B(y) ⇒ ∃x : A(x)

is guaranteed to hold.
Since there is no global naming system for objects, the only objects that

can be given in the actual parameter list z in the ‘applied occurrence’ S.A(z)
are the participants of B. Therefore, the participant roles in the refined action
B(y) must be a superset of those in A(x) (with possible renaming).

Notice that the applied occurrence S.A(z) is analogous to subroutine invo-
cation: executing action B(y) will always involve executing A(z). The situation
is, however, different in the sense that an execution of B(y) cannot even start
unless the guarding condition of S.A(z) is also true.

In addition to explicitly given actions, a specification layer S with variables
X can be understood to contain also an implicit stuttering action StutterX.
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Refinements of this stuttering action are not allowed to modify any variables
in X and are therefore called new actions in T, indicating that they are ‘new’
with respect to layer S.

6.1.2 Superposition

Let S and T be two action systems with actions Ai, i = 1, . . . , m, m ≥ 0, and
Bj, j = 1, . . . , n, n ≥ 0, respectively, and let the associated canonical TLA
expressions be2

S
∆
= P ∧ �[A1 ∨ · · · ∨ Am]X ∧ F , (6.2)

T
∆
= Q ∧ �[B1 ∨ · · · ∨ Bn]Y ∧ G . (6.3)

Suppose now that T has been obtained from S by a construction where

• the set of variables may have been extended, i.e., X ⊆ Y,
• the initial condition may have been strengthened, i.e., Q ⇒ P,
• each action Bj is either a new action (with respect to S) or a refinement of

some action Ai in S, and
• fairness requirements G may be given arbitrarily in T.

We then say that T has been obtained from S by superposition.
Superposition determines an ancestor relation between actions in the two

systems, so that each action Bj in T has a unique ancestor action in S, which
is either some Ai such that Bj ⇒ Ai or StutterX.3 For completeness we say
that the ancestor of the (implicit) stuttering action StutterY in T is StutterX

in S.
Obviously, the superposition relationship between action systems is tran-

sitive, and the liveness properties F and G have no effect in its definition.

6.1.3 Preservation of Properties

Basically, superposition is a relation between safety specifications, since the
fairness formulas F and G in (6.2) and (6.3) are irrelevant in its definition.
Also, for a given safety part in (6.3) there need not exist any feasible fairness
formula G that would make T imply the liveness property F in (6.2), i.e., would
make T a refinement of S (see Exercise 6.1.2).

The ancestor relation between actions means, however, that implication

[B1 ∨ · · · ∨ Bn]Y ⇒ [A1 ∨ · · · ∨ Am]X (6.4)

2Since disjunction of zero actions is understood as an identically false action,
�

�

�
(

�

�

�
) would mean that only stuttering steps are allowed by S (T).

3Although a TLA action
� � could imply several different actions

�
� of layer S,

only one A
� can be specified as the ancestor of B � .
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is identically true (Exercise 6.1.1). An important property of superposition
therefore is that all safety properties are preserved, i.e., Cl(T) ⇒ Cl(S), or

Q ∧ �[B1 ∨ · · · ∨ Bn]Y ⇒ P ∧ �[A1 ∨ · · · ∨ Am]X .

Unfortunately, preservation of liveness properties cannot be guaranteed
in superposition by any generally applicable and mechanically enforceable
constraints. Additional proofs are therefore needed, in general, to show that
a given superposition step also preserves liveness properties and is therefore a
refinement. This will be discussed in more detail below in Sects. 6.1.7–6.1.9.

6.1.4 Supporting Superposition

An import mechanism and language conventions support superposition in the
action language as follows.

Let T be a specification layer that imports S, and let (6.3) and (6.2) be
the associated canonical TLA expressions. Condition X ⊆ Y is then enforced
by the following conventions:

• All global variables of layer S are taken into T, and further global variables
can also be introduced.

• All classes of layer S are taken into T, and these can also be extended in T
with further attributes, as for example in

class C = {. . . z : Z} .

• New class declarations can also be introduced in T.
• All relations of layer S are taken into T, and further relations can also be

introduced.

Condition Q ⇒ P is enforced by the following convention:

• All initial conditions of layer S are taken into T, and further initial condi-
tions can also be introduced.

Notice, however, that the satisfiability of Q cannot be mechanically checked,
in general.

The required ancestor relation between actions is established by the fol-
lowing conventions:

• No action definition in layer T is allowed to introduce new modifications
to any state variables in X.

• Each refinement of an action Ai in layer S is given either by a definition
that uses an explicit instance of Ai, or as the default refinement of Ai, which
corresponds to

Ai ∧ StutterY\X .
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As for fairness requirements for actions, these will be explicitly indicated
for all explicit refinements and all new actions. For default refinements they
will be taken as such from S.4

A �
� A �

� ext
B �

B �
B �

�

B � B �

S

T

Fig. 6.1. Illustration of superposition

Figure 6.1 illustrates a situation where layer T, to which layer S has been
imported, extends class C with new attributes and introduces a new class D.
Actions B1 and B2 in T refine action A1, action B3 refines A2 adding another
participant of class D to it, and B4 and B5 are new actions in T. The dashed
arrows indicate the ancestor relation between the actions of the two layers.

6.1.5 Example: Refining a Stack

As a simple example, consider an initial layer of specification, Stack, where a
stack is modeled as a list of natural numbers, initialized as an empty list 〈〉,

s : list N (〈〉) ,

with two actions for pushing and popping numbers x,

Push(x : N) : T→ s ′ = 〈x〉 ◦ s ,

Pop(x : N) : length(s) > 0

∧ x = first(s)→ s ′ = rest(s) .

4Default refinements can therefore be directly taken in their textual forms from
layer S.
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Functions length(s), first(s), and rest(s) are here assumed to give the length
of a list, its first element, and the rest of the list, respectively, and ‘◦’ denotes
list concatenation.

Wishing to extend this initial specification with a display, through which
numbers can be entered to the stack, and to which numbers can be popped
from it, we can import it to a new layer Refined Stack with a new variable

display : N (0) .

As for new actions in this refined specification, the display can be cleared at
any time by an action

Clear : Stack.Stutter→ display ′ = 0 ,

and a new number, consisting of at most N digits, can be entered to it digit
by digit by another new action

Digit(d : N) : Stack.Stutter

∧ 0 ≤ d ≤ 9

∧ display < 10N−1

→ display ′ = 10 × display + d .

Refining action Push into

Enter : Stack.Push(display) ,

only numbers in display can be pushed to the stack, and refining action Pop
into

Pop(x : N) : Stack.Pop(x)→ display ′ = x ,

the popped number is always shown in the display.

6.1.6 Example on Liveness Preservation

As stated above, preservation of liveness properties needs to be checked in
superposition. As an example consider non-preemptive allocation of a single
resource to concurrently running processes.

In the initial layer of specification, Basis, each process p ∈ P is assumed
to have Boolean variables need and use to indicate whether the process needs
or is currently using the resource, respectively:

class P = {need, use : B (false)} .
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Requesting the resource, granting it to a process, and releasing the resource
can then be expressed by the following actions:

Request(p : P) : p.use = p.need = false→ p.need ′ = true ,

Grant(SFp : P) : p.need = true

∧ ∀q ∈ P : q.use = false→ p.need ′ = false

∧ p.use ′ = true ,

Release(WFp : P) : p.use = true→ p.use ′ = false .

Obviously, the given fairness assumptions guarantee that, once a process has
requested the resource (by action Request), it will eventually obtain it (by
Grant) and also release it (by Release).

A first-come-first-serve policy can be superposed on this layer by importing
it to a new layer Simple Policy and introducing the following refinements.
For identification of processes, class P is extended with unique identification
numbers,5

class P = {. . . id : N} , ∀p, q ∈ P : p �= q ⇒ p.id �= q.id ,

a queue is introduced for pending requests,

queue : list N (〈〉) ,

actions Request and Grant are refined to use this queue as follows,

Request(p : P) : Basis.Request(p)→ queue ′ = queue ◦ 〈p.id〉 ,

Grant(WFp : P) : Basis.Grant(p)

∧ first(queue) = p.id→ queue ′ = rest(queue) ,

and action Release is kept as its default refinement. Obviously, when several
pending requests exist, the resource will now always be given to the process
that has waited longest.

The liveness property expressed by the fairness marking in Basis.Release
is obviously preserved in this superposition, since the default refinement

5These numbers
� � � �

are identification attributes to be used in the application,
not the postulated object identities

� �

id (see Sect. 5.3.1, p. 136).
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Simple Policy.Release is enabled whenever the guard of Basis.Release
is true, and the fairness marking is not changed in default refinement. As for
the fairness requirement in Basis.Grant, we have to show that, if the guard
of this action is repeatedly true for process p in the refined system, the refined
action Simple Policy.Grant will eventually be executed for it. Whenever the
(non-refined) guard is true, the fairness marking in the refined action forces
its execution for the process that has waited longest. Therefore, process p will
eventually be the one that has waited longest, and Simple Policy.Grant will
then be executed for it.

6.1.7 Proof Obligations for Liveness Preservation

In terms of the notation in (6.2) and (6.3) on p. 164, preservation of liveness
properties in superposition requires that implication T ⇒ F holds. Since F is
a conjunction of some strong and weak fairness conditions Fi, we get proof
obligations

T ⇒ Fi (6.5)

for each Fi. If G ⇒ Fi holds for each i, we have a simple situation where the
fairness conditions of T are as such sufficient to prove (6.5), but, in general, a
proof requires us to utilize safety properties of T also.

To look into this in more detail, let

A
∆
= ∃x, y : A(x, y)

be the TLA expression for an action A in layer S, where x and y denote
an arbitrary partitioning of parameters, such that at least those in x have
fairness markings. According to Sect. 5.5.5 (p. 149), F then includes a fairness
requirement of the form (5.12) on p. 150, and the proof obligations for (6.5)
therefore have the form

T ⇒ ∀x : XF(∃y : A(x, y)) , (6.6)

where XF stands for either SF or WF.

6.1.8 Liveness Preservation: Special Case

It is often the case that the refinements of an action A are such that (at
least) those participants and other parameters that have fairness markings in
A also appear as parameters in these refinements. In that case it is natural
to transfer the fairness markings of A as such to these refinements also. For
instance, fairness marking on role c in action A(SFc : C . . . ) could then be
taken as such in each of its refinements B,

B(. . . SFc : C . . . ) : S.A(c . . . )

· · · .
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In this subsection we discuss some conditions that are sufficient for (6.6)
in this special situation. First we also make some additional simplifying as-
sumptions.

Default Refinements

Default refinements obviously satisfy the above assumptions, since all param-
eters then remain the same, and all fairness markings are also retained.

In terms of logic, default refinement of an action ∃x, y : A(x, y) gives
an action ∃x, y : B(x, y), where the enabling guard is the same, and B(x, y)
implies A(x, y). Therefore, XF(∃y : B(x, y)) always implies XF(∃y : A(x, y)).
This means that preserving fairness markings also preserves all associated
fairness properties.

Single Non-disabling Refinements

Default refinements can be understood as a special case of a more general
situation, where action A has only one refinement B in layer T, and its guard
is not strengthened for such participant combinations that are critical for the
preservation of liveness properties.

Let A(x, y) therefore be an action in layer S, where x stands for all those
participants and other parameters that have fairness markings, and y stands
for all other parameters, and let g+

A(x, y) be the enabling condition for the
stutter-excluding part of A(x, y).6 Furthermore, let action B(x, z), whose en-
abling guard is gB(x, z), be the only refinement of action A, and let all param-
eters x of A be present in B as such.

If all fairness markings of A (on participants and other parameters in list
x) are also included as such in B, then the condition

∃y : g+
A(x, y) ⇒ ∃z : gB(x, z) (6.7)

is sufficient to ensure that for each fairness condition Fi on action A in S there
is a corresponding fairness condition Gj on action B in T such that Gj ⇒ Fi

(Exercise 6.1.3). In other words, all fairness properties with respect to action
A in layer S are then also satisfied in layer T.

Multiple, Possibly Disabling Refinements

Let A(x, y) and g+
A(x, y) be as above, but let T have multiple refinements

Bi(x, zi), i = 1, . . . , k, of action A, with enabling guards gBi
(x, zi). If condition

∃y : g+
A(x, y) � ∃z1 : gB1

(x, z1) ∨ · · · ∨ ∃zk : gBk
(x, zk) (6.8)

6For the stutter-excluding part, see Sect. 3.4.8, p. 83. Since
� �

� implies the en-
abling of

�
, the guard of

�
can be used here instead of

� �

� , whenever this is sufficient
for the conditions to be given in this subsection.
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holds in T , then the fairness properties of action A are preserved in T if the
fairness markings of A are taken to all Bi so that weak markings are replaced
by strong markings (Exercise 6.1.4).

Notice that weak markings cannot, in general, be kept weak here, even if
the ‘leads to’ operator in (6.8) is replaced by implication, since the guard of
A could stay continually true without any Bi being continually enabled. This
shows that strong fairness properties are, in general, more stable in superpo-
sition than their weak counterparts.

6.1.9 Liveness Preservation: General Case

To discuss proof obligations (6.6) for arbitrary situations, let g(x, y), g+(x, y),
and g0(x, y) be the enabling guards of A, A+, and A0, respectively.

When XF stands for SF, proving (6.6) requires us to prove that, for any
x, a state satisfying

∃y : g+(x, y) (6.9)

always eventually leads to one of the following situations in T:

• state predicate ∃y : g0(x, y) holds, i.e., a stuttering execution of A(x, y) is
encountered,

• state predicate ¬∃y : g+(x, y) holds permanently, or
• a non-stuttering step is taken that implies A+(x, y) for some y.

Notice that, in the case of non-disjoint actions in S, executing an action B in
T may give an A step even when A is not the ancestor of B.

Correspondingly, when XF stands for WF, any state satisfying (6.9) must
always lead to one of the following situations in T:

• state predicate ¬∃y : g+(x, y) holds, or
• a non-stuttering step is taken that implies A+(x, y) for some y.

Review Questions

Question 6.1.1 What is understood here by a specification layer?

Question 6.1.2 What is the criterion for an action system to be a refinement
of another action system?

Question 6.1.3 Why is it crucial in superposition not to introduce any new
assignments to old variables?

Question 6.1.4 Is superposition defined as a relation between TLA expres-
sions or between specifications in the action language?

Question 6.1.5 What is understood by the ancestor relation?
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Question 6.1.6 Why is it so that there need not exist any fairness properties
that would make a given superposition step a refinement?

Question 6.1.7 Is there a difference in the stability of weak and strong fair-
ness properties under superposition?

Exercises

Exercise 6.1.1 Show that implication (6.4) on p. 164 is identically true in
superposition.

Exercise 6.1.2 Give an example of a superposition step that cannot be made
a refinement by any fairness markings. Hint: consider the simple situation
where n = 0 in (6.3) on p. 164, i.e., there are no actions in T.

Exercise 6.1.3 Show that condition (6.7) on p. 170 is sufficient for the sit-
uation discussed there.

Exercise 6.1.4 Show that condition (6.8) on p. 170 is sufficient for the sit-
uation discussed there.

Exercise 6.1.5 Check that the proof obligations given in Sect. 6.1.9 (p. 171)
are correct.

Exercise 6.1.6 Discuss the special cases of Sect. 6.1.8 (p. 169) in the light
of the general discussion in Sect. 6.1.9 (p. 171).

Exercise 6.1.7 Let T1 and T2 be obtained from layer S by two consecu-
tive superposition steps, so that T1 is obtained from S, and T2 from T1 by
superposition. Is it possible that T2 is a refinement of S, but T1 is not?

6.2 Composition and Layered Specifications

Different closed-system models can be given to model the same system from
different (possibly overlapping) viewpoints. By composition we then under-
stand their synthesis into a single closed-system model.

Formally, composition of two or more specification layers is defined as
simultaneous superposition on all of them. In particular, the initial condition
of a composed layer then implies the initial conditions of all components, and
each of its actions is a refinement of one (possibly stuttering) action in each
of them.

With this definition, composition is not a uniquely defined operation be-
tween layers, and it need not preserve their liveness properties.
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Composition is expressed in the action language by importing the compo-
nent layers (which imports all associated global variables, classes, relations,
and initial conditions), and giving the additional global variables, classes,
class extensions, relations, and initial conditions, as well as the actions of the
composition and their fairness assumptions.

Since composition is superposition on all component layers, the safety
properties of all components are preserved. In order to be a refinement of its
components, their liveness properties must also be preserved, which can be
shown in the same way as for superposition on a single layer.

Before going to technical details of composition, we explain how superpo-
sition and composition are intended to be used for layered specifications.

6.2.1 Layered Specifications

Superposition and composition are transformations that are used to obtain
layered specifications, in which each layer is obtained from some previous
layers by these constructions. For completeness, an empty initial layer can be
assumed, from which all other layers are derived.

�

� ∪ �
� ∪ �

S
�

S
�

S �

Fig. 6.2. Illustration of independent superposition steps on the same layer

Entities that are introduced in a layer are always considered to be different
from those introduced in any other layer.7 Therefore, when several different
superposition steps are applied to the same layer, the new variables introduced
in these steps are different. Figure 6.2 illustrates this for two independent
superposition steps on layer S1. The associated sets of new variables, Y and
Z, are therefore disjoint. The resulting layers S2 and S3 are non-independent,
since the variables X of layer S1 are included in both.

In general, the layered structure obtained by superposition and composi-
tion has the form of a directed, acyclic graph, as illustrated in Fig. 6.3. In
this structure, a layer is called a predecessor of another layer if the latter has

7Introducing the same name in two different layers causes a name clash, which
can always be resolved by renaming.
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Fig. 6.3. Illustration of a layered structure

been obtained from the former by a sequence of superposition and composi-
tion steps. Layer S1 in Fig. 6.3 is a common predecessor of layers S2 and S3,
which in turn are predecessors of layer S4. As for variables, X4 includes both
X2 and X3, which in turn include X1.

Extending the ancestor relation between actions to its transitive closure,
composition will be defined so that each action of any layer has unique ancestor
actions in all predecessor layers. More precisely, each execution of an action
will have a unique interpretation as an action execution in each predecessor
layer.

The predecessor relation between layers and the ancestor relation between
(non-stuttering) actions are shown in Fig. 6.3 by solid and dashed arrows,
respectively. For instance, action A1 in layer S1 is a common ancestor of actions
A2, A3, and A4 in the other layers. Notice that layer S4 could not have an action
whose ancestors would be A2 and StutterX3

, for instance, since then it would
have two different ancestors, A1 and StutterX1

, in S1.
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Obviously, if all superposition and composition steps in the layered struc-
ture are refinements, then each layer is a refinement of all its predecessor
layers. Conversely, we can then understand each layer as a correct abstraction
of those derived from it.

6.2.2 Composition of Independent Layers

In the following we consider composition of only two layers. The discussion
can, however, be immediately generalized to any number of them.

Let S and T be two specification layers with actions Ai(xi), i = 1, . . . , m,
and Bj(yj), j = 1, . . . , n, respectively, and let the associated TLA formulas be

S
∆
= P ∧ �[A]X ∧ F ,

T
∆
= Q ∧ �[B]Y ∧ G ,

where

A
∆
= ∃x1 : A1(x1) ∨ · · · ∨ ∃xm : Am(xm) ,

B
∆
= ∃y1 : B1(y1) ∨ · · · ∨ ∃yn : Bn(yn) .

To simplify the presentation we will assume in the following that the stuttering
actions StutterX and StutterY also appear explicitly among actions Ai(xi)
and Bj(yj), respectively.

Layers S and T are said to be independent if X and Y are disjoint, i.e.,
X ∩ Y = ∅. In this case the situation is simplified by the facts that P ∧ Q

is satisfiable if both P and Q are satisfiable, and that no pair of actions
(Ai(xi), Bj(yj)) can have conflicting assignments. The latter property makes
it possible for a composition to have actions with any two actions Ai and Bj

as their ancestors.
Analogously to superposition on a single layer, actions of a composition

will be expressed in the action language in a form that first gives (the instan-
tiations of) the ancestors explicitly, and then the added guarding conditions
and assignments to the new variables:

C(x) : S.Ai(y)

∧ T.Bj(z)

∧ · · ·→ · · · .

Such an action is called a synchronization of the given ancestors. In an
operational interpretation, its execution implies executing these ancestors at
the same time. When both ancestors are stuttering actions, an action is called
a new action.
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By default synchronization we mean synchronization where no additional
strengthening is added to the synchronized actions, and the participants and
other parameters (together with their fairness markings) are taken as such
from both. In terms of TLA this means plain conjunction of the synchronized
actions.

� A B
�

C

� ∪ � ∪ �
A � B �

D

S T

Fig. 6.4. Illustration of composition of independent layers

Composition of two independent layers may now have three kinds of ac-
tions, as illustrated in Fig. 6.4: synchronizations of non-stuttering actions (C),
actions in which variables of only one component are modified (A1 and B1),
and new actions (D).

6.2.3 Unification of Action Instances

When layers S and T are non-independent, they have common variables, which
must have been introduced in the common predecessor layers. If arbitrary (in-
stances of) actions in S and T were allowed to be synchronized in composition,
the implied (instances of) actions in those common predecessors might be dif-
ferent. This is the case, in particular, if the ancestors of the synchronized
actions are different, but even common ancestors do not prevent this, as is
shown by the following example.

Example

Let actions A and B in layers S and T be defined as refinements of action
A0(c : C; x : Z) in a common predecessor layer S0 (see Fig. 6.5) as follows:
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Fig. 6.5. Actions with a common ancestor

A(c : C; x : Z) : S0.A0(c, x + 2)

· · · ,

B(c : C) : S0.A0(c, 5)

· · · .

Consider now arbitrary instances S.A(c, z) and T.B(d) of these actions. The
instances of action A0 that these would imply in layer S0 are S0.A0(c, z + 2)
and S0.A0(d, 5), respectively. These implied instances are the same only when
the condition

c = d ∧ z + 2 = 5 (6.10)

is satisfied.

Unification Condition

Condition (6.10) is called the unification condition for the above instantiations
S.A(c, z) and T.B(d). More generally, given instances of two actions with com-
mon ancestors in all common predecessor layers, their unification condition is
defined to express that all participants and other parameters are the same in
the implied instances of these common ancestors. (For actions with different
ancestors in a common predecessor layer the unification condition is defined
to be identically false.)

As a special case, the unification condition is identically true for actions
with only stuttering ancestors in their common predecessor layers. In partic-
ular, for actions in independent layers it is always true.

The unification condition can always be constructed by tracing the ances-
tors in the common predecessor layers and their implied instances. When not
identically false, its form is such that some participants are equated (c = d in
the above example), and some equations are given to constrain the values of
other parameters (z + 2 = 5 above).
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6.2.4 Composition of Layers: General Case

Composition, as discussed above, can now be generalized to arbitrary layers
in a natural manner. Compared to independent layers, the only constraint
is that the unification condition must always be true for the synchronized
action instances. For the participants in these instances this can be mechan-
ically checked; for the other parameters this can be ensured by the guarding
conditions.

In the following we will always use action synchronization in such a way
that the unification conditions are trivially true.

Finally, we give a few concluding remarks on layered specifications and
composition:

• The preservation of all safety properties of the preceding layers is always
guaranteed by construction.

• Each action execution can always be projected to a unique action execution
(possibly stuttering) in all preceding layers.

• Composition depends on the derivation history of layers; a specification
therefore always consists of the whole layered structure of this history.

• Sometimes there is a need to compose several copies of the same specifica-
tion. In this case deep copies are assumed, i.e., copies of the whole layered
structure involved.

• In non-independent layers, initial conditions may be conflicting in the sense
that their satisfaction need not be possible in composition (Exercise 6.2.1).

• In non-independent layers, their liveness properties may be conflicting in
the sense that their preservation need not be possible in composition (Ex-
ercise 6.2.2).

6.2.5 Example: Simple Component Composition

As an example of composing independent layers, consider a simple situation
of independently specified ‘producer’ and ‘consumer’ objects. The producer
objects p ∈ P are defined in layer S with action

Give(p : P; x : Z) : gp(p, x)→ · · · ,

where the guard gp(p, x) determines when p is ready to deliver the next piece
of data x and what the value of x then is. Correspondingly, layer T contains
consumer objects c ∈ C with action

Take(c : C; y : Z) : gc(c, y)→ · · · ,

where the guard gc(c, y) determines when c is ready to receive the next piece
of data y, possibly with constraints on acceptable values of y.
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Layers S and T can now be composed so that actions Give and Take are
synchronized to model their concurrent execution with the same piece of data:

Transfer(p : P; c : C; z : Z) : S.Give(p, z)

∧ T.Take(c, z) .

Notice that the action language makes no distinction between ‘input pa-
rameters’ and ‘output parameters’. For instance, both Give and Take may
impose constraints in a similar manner on the values of x and y, respectively.
If these constraints are contradictory, action Transfer is identically false.

Review Questions

Question 6.2.1 Why is composition, as defined here, not a uniquely defined
operation between specifications, and why does it depend on their derivation
histories?

Question 6.2.2 What are the characteristic properties of layered specifica-
tions, obtained by superposition and composition?

Question 6.2.3 What is meant by the unification condition of action in-
stances?

Exercises

Exercise 6.2.1 Give an example of non-independent layers, whose initial
conditions cannot be satisfied in their composition.

Exercise 6.2.2 Give an example of non-independent layers, whose liveness
properties cannot be preserved in composition.

Exercise 6.2.3 Give an example where the unification condition is false, but
the implied instances of the common ancestor actions are still equivalent.

6.3 Superposition-based Design

The techniques discussed above lead to a superposition-based design method
to derive specifications incrementally. As discussed in Sect. 6.2.1 (p. 173), we
can start from an empty initial layer and construct further layers as refine-
ments, so that a layered structure of superpositions is created. In this section
we take a closer look at some general properties of this method.
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6.3.1 Closed-system Modularity

In conventional object-oriented programming and design, objects are often
taken as natural units for modularity. The aim then is to design entities whose
implementations are reusable components. Since individual components can-
not enforce constraints on their environments, they are described as ‘open’
systems with given interfaces. Formulation of behavioral properties then re-
quires assume–guarantee pairs of properties, where the system guarantees a
property assuming that a given assumption is true of the environment.

Since “it takes two to tango,” objects do not produce behaviors in isolation
from their environments. Also, the properties that are relevant in system spec-
ification are not, in general, properties of individual objects (or classes), but
collective properties that arise from possible interactions between them. The
closed-system principle makes it possible to consider such collective proper-
ties without the need to compose them from the individual assume–guarantee
pairs of open components.

For the approach of this book the natural units of modularity are therefore
not individual objects, but ‘closed’ action systems with class declarations,
definitions of multi-object actions, constraints for initial conditions, etc. Such
systems are, in fact, generic patterns, of which different kinds of concrete
instantiations are possible.

In general, layers of specification are logical modules, which introduce log-
ically coherent layers of collective properties. They also use each other by
logical implication – actions imply their ancestors, and layers imply their pre-
decessors – whereas conventional software modules produce behaviors only
when put together by explicit communication and invocation mechanisms.

As shown by the simple example in Sect. 6.2.5 (p. 178) it is, however,
also possible to use independent layers to specify individual implementation
modules. In such a case the environment of a component is only implicit in
the model – but still involved in the actions – and the distinction between an
open and a closed system is therefore more or less in the eye of the beholder.

6.3.2 Development Strategies

In this subsection we take a brief look at different development strategies (or
design methods) that are possible with superposition-based techniques.

The notion of state was defined so that all possible variables have unique
values in each state. Each behavior therefore contains a complete description
of how ‘the whole world’ behaves during a single execution. Each specification
layer Si focuses, however, on a given set of variables Xi only, and nothing is
said about other variables. If one observes only how variables in this set Xi

behave in an intended world, then one should obtain only such observation
sequences that satisfy Si. This means that layer Si is a correct abstraction of
the intended world, where the focus is on Xi, and everything else is ignored.
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Another way to put this is that each layer Si is a projection of the intended
world to the variables in Xi.

The word ‘abstraction’ is often associated with a design-oriented view,
where higher-level abstractions are utilized in order to achieve ‘correctness
by design’, whereas the word ‘projection’ associates more with a verification-
oriented view, where one verifies properties of a system by utilizing suitable
projections of it.
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Fig. 6.6. Layered structures resulting from top-down (left), bottom-up (center),
and aspect-oriented development (right)

These two views also relate to the design approaches that are used. In
top-down development one starts with an overall idea of the whole system,
and proceeds stepwise, making the design more and more concrete by filling
in the details. This can be done in a natural manner by superposition steps,
as illustrated in the left-hand part of Fig. 6.6. When the emphasis is on logical
rather than architectural properties, the design process then starts from a very
abstract level S0, and the level of abstraction is lowered stepwise by widening
the focus with further variables and incorporating more detailed design de-
cisions, until all necessary aspects have been included and an implementable
model S has been reached. The unique ancestor relation between actions at
different levels then guarantees traceability of actions to all higher levels of
abstraction.

In contrast, bottom-up development starts from the specifications of parts
(components) of a system, and composes a total solution from them. The
center part of Fig. 6.6 is a schematic illustration of how this can be done by
composition steps, in which independent specification layers Si are composed
into a specification S of the total system. In this case, each layer in the spec-
ification is a temporally complete projection of the total system to some part
of it. The ancestor relation between actions then projects actions in the final
specification to actions in those components that are involved in them.
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In bottom-up development the intended logical properties of the total sys-
tem are present only in the final stage S, whereas in pure top-down develop-
ment they are included already in the initial layer S0, although perhaps in
an abstract form that may not be directly implementable. Neither of these
extremes is, in general, recommendable in its pure form. Even when the linear
path of the left-hand part of Fig. 6.6 is followed, incremental development also
needs steps in which new required properties are added to the specification.
Therefore, the structure of the resulting layered specification does not directly
indicate the associated development process.

The rightmost part in Fig. 6.6 illustrates the result of another form of de-
velopment process, aspect-oriented development, for which the layered struc-
ture of specifications is eminently suited. In it, layers that address different
aspects of the specification have a common predecessor layer S0, but they are
specified in otherwise independent branches Si, which are in the end composed
to the final specification S. The role of the root S0 is to provide a common
framework for which all aspects Si should be designed (bottom-up concern),
and it can also give an abstract specification of those properties for which the
aspects are intended to provide implementable refinements (top-down con-
cern).

For separation of concerns, aspect-oriented development gives more pow-
erful possibilities than bottom-up development, since aspects are, in general,
independent of the intended architectural components. Typically, aspects cor-
respond to groups of logical properties that cut across several components in
an implementation (crosscutting concerns). In that case the components are
not complete in the specification until all aspects Si have been composed into
S.

The two examples in Sects. 6.5 and 6.6 will demonstrate different kinds of
uses for this kind of a pattern for layered specifications.

No matter which development strategy is used, it is important that the
first layers try to address the most stable properties of a system, i.e., those that
are the most likely not to change during the specification and design process,
or during the evolution of an implemented system. In the case of a product
family, these layers should also address properties that will be common to
the whole family. The layered structure can then provide a valuable basis for
maintaining the specifications of evolving systems, and for estimating how
deeply some proposed changes will affect the system.

6.3.3 Note on Variables and Associated Actions

In connection with conventional design methods it may be recommended to
start with ‘static’ aspects of the system, by first analyzing in detail the re-
quired state variables (i.e., objects and their local states), and to postpone
the consideration of ‘dynamic’ properties.

This is in obvious conflict with the principles of superposition-based design.
If a state variable x has been introduced in layer S without any actions to



6.3 Superposition-based Design 183

modify its value, then x would stay unchanged in S. No later layer T could
introduce such actions, either, without violating the implication T ⇒ S.

This may at first sound like an undesirable restriction. It is, however, intu-
itively quite natural, since variables without associated actions are meaning-
less in a specification – except for immutable constants, which describe some
fixed parameters of the problem. An ‘ordinary variable’ is given a meaning
only by the behaviors in which its value is utilized, i.e., by the actions that
access and/or modify its value. If the values to be assigned to a variable are
not available at the stage where the variable is introduced, nondeterministic
actions should be used, as will be discussed below.

A useful way to describe the purpose of a variable is to give invariants that
are intended to be maintained for it. These invariants are obviously intimately
tied to the actions by which the variable can be modified.

6.3.4 Nondeterminism and Refinement Steps

Extending the focus of a specification with further variables can be understood
as a step that decreases the nondeterminism that is allowed by a specification
layer. Obviously, the assumed empty initial layer is the most nondeterministic
specification that is possible, since it allows all possible behaviors. Each non-
trivial design step, on the other hand, decreases the nondeterminism that is
allowed by the layers imported to it.

In addition to completely unrestricted nondeterminism with respect to
those variables that are not talked about in a specification, there is also non-
determinism in selecting the next action, and also in the effects of action
bodies.

As an example of the former, consider modeling of the environment in the
gas-burner example of Chap. 2. Obviously, the model that was given was more
nondeterministic than the reality. With a wider focus one could extend the
model, for instance, to describe how heating, changes in weather, etc., would
affect the enabling of environment actions.

Nondeterministic effects of actions, on the other hand, can be achieved
by action parameters, whose values are selected nondeterministically but may
be constrained by the guards. This provides an effective way to introduce
explicit nondeterminism without nondeterministic bodies, and also to control
this nondeterminism in later refinement steps.

For instance, when a variable has been introduced at a stage where it is
impossible to give the exact values that are assigned to it in actions, these
values can be given as nondeterministic parameters. When more information
becomes available in later refinement steps, these parameter values can be
determined more precisely.

6.3.5 Notes on Encapsulation

Modularity usually involves encapsulation, by which internal details of a mod-
ule can be hidden from the modules in which it will be utilized. The need for
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this may also arise when specification layers are imported. State variables and
actions that have been introduced in a layer may only serve a local purpose
within the layer itself, and would not need to be visible for access or refinement
in importing layers.

On the other hand, starting with a closed-system model at a high level of
abstraction, one may wish to partition further work into subprojects in which
different aspects of the model are refined independently. This may require that
different variables and actions are made visible to different subprojects only.
In order not to complicate the presentation, we shall not, however, introduce
any special hiding mechanisms for such purposes.

Compared to programming languages, the situation is simplified by the
rules for superposition, which guarantee that an importing layer cannot in-
troduce accidental changes in state variables. Non-modifying use of imported
variables may, however, also be harmful, since this introduces superfluous de-
pendences on predecessor layers, which complicates their later modification.

Action parameters provide a useful mechanism to avoid such dependences.
For instance, if the value of variable a is expected to be relevant for future
refinements of an action, then convenient access to this value can be provided
by adding a parameter x and a guarding condition x = a to the action. Re-
finements of A can then access the value of a through this parameter, without
explicit reference to the variable itself.

Review Questions

Question 6.3.1 Why are objects not the natural units of modularity in
closed-system specifications?

Question 6.3.2 What is the difference in modeling an individual component
as an open system or as a closed system?

Question 6.3.3 In which sense is every layer in a layered specification a
correct abstraction of the intended ‘world’?

Question 6.3.4 What is characteristic to aspect-oriented development?

Question 6.3.5 Why is it not possible to introduce further changes to a vari-
able in later layers of specification, and why is this not an essential restriction?

Question 6.3.6 In which ways is nondeterminism decreased in superposition
steps?
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6.4 Beyond Superposition

Superposition – by itself or in connection with composition – is a powerful
technique that fits the basic philosophy of our approach in a most natural way.
A pure superposition relationship is not, however, sufficient for all transfor-
mations that may be needed in practice. In this section we therefore discuss
some natural possibilities to relax this relationship in a carefully constrained
manner.

Basically, these relaxations have three kinds of effects:

• They allow simplification of specifications in manners that are not possible
by pure superposition.

• Some of the relaxations weaken the role of predecessor layers as abstrac-
tions. In particular, the unique ancestor relation between actions may be
violated for some actions.

• Some logical properties cannot be preserved in some of the relaxed trans-
formations. Such transformations are still useful in situations where these
properties concern only auxiliary variables (i.e., quantified state variables
in terms of TLA), or the weakened properties have been unnecessarily
strong due to overspecified models.

6.4.1 Simplification of Actions

Action refinement was defined in Sect. 6.1.1 (p. 162) so that action B in T
refines action A in S if implication B ⇒ A is identically true. Relaxing this
into the weaker requirement that this implication is true for all reachable
steps, i.e., that

�[B ⇒ A] (6.11)

holds in T, the essential properties of superposition are still retained: safety
properties of S are preserved, and a unique ancestor relation is established
between actions.

The same effect can be achieved conveniently by combining an ordinary
superposition step with simplification of the resulting actions. To be more
precise, if I is a state invariant in a system, and

I ∧ A ⇔ I ∧ B (6.12)

is identically true, then action A can be replaced by B without affecting the
behaviors that are generated by the system. If B is in some sense simpler than
A, then the specification has been simplified.

The main use of this kind of action simplification is in the simplification
of action guards. For instance, if action A has guard g ∧ h, and we can show
that g ⇒ h is true in all reachable states, then we can remove conjunct h

from the guard.
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Other kinds of action transformations that satisfy (6.12) also include ones
that involve addition and/or deletion of action parameters. For instance, ac-
tion simplification may lead to a situation where some of its participants are
no longer needed. In deleting such a participant one has, however, to remem-
ber that the guard implicitly also contains the condition that such an object
exists. An instance of such a situation will appear in the example of Sect. 6.6.

6.4.2 Data Refinement

As far as state variables are concerned, superposition allows us only to in-
troduce new variables, not to remove old ones. It is often the case, however,
that one wishes to change the representation of state functions by replacing
previously introduced variables by new ones. Such a transformation is called
data refinement.

To illustrate the situation, let x be a state variable that should be replaced
by new variable(s) y. The technique that can be used is to introduce y in a
superposition step, and to prove that

�(x = f(y))

then holds for some state function f(y) that does not depend on x. After that,
all applied occurrences of x can be replaced by f(y), and variable x then turns
into a non-primitive state function (or ‘ghost’ variable) that can be omitted.
In other words, x has then been changed into an abstraction that needs no
explicit representation as such, and f(y) provides the associated abstraction
mapping. As a byproduct, this may also lead to elimination of participants
that have become superfluous for some actions.

When used in combination, superposition and data refinement provide a
very powerful technique for the refinement of specifications, and none of the
essential characteristics of superposition-based design are then violated.

6.4.3 Refinement of Atomicity

In principle, the atomicity of an action cannot be refined in superposition. If
an action has an effect on two variables x and y, these effects cannot be split
into separate actions without affecting some safety properties. Such refinement
of atomicity would, however, often be useful in practice.

The associated problems can often be circumvented by introducing another
variable z that mimics one of the variables, say y, but is modified separately
from x. Obviously, this means that in some states the values of y and z do not
agree, but if y is not accessed in such states (which needs to be proved with
the aid of suitable invariants), all its applied occurrences can be replaced by z.
Variable y has then, in fact, become an abstraction that need not be explicitly
present, and the splitting of an action has also been effectively accomplished.
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This technique is especially useful in refining centralized algorithms into a
form for which distributed implementation is possible. Some variables of the
centralized algorithm are then turned into abstractions that are not explicitly
accessed in distributed implementations. Examples of using the technique for
this purpose will be given in later chapters of this book.

6.4.4 Disjunctive Actions

Ignoring fairness requirements, a set of actions A1, . . . , Ak could be replaced by
one that corresponds to their disjunction A1 ∨ · · ·∨ Ak. In action refinement
one might therefore wish to relax condition (6.11) further into

�[B ⇒ A1 ∨ · · · ∨ Ak] . (6.13)

An important special case of such disjunctive actions is that of stuttering
relaxation of an action A, by which we mean the situation where (6.13) has
the form

�[B ⇒ A ∨ StutterX] . (6.14)

Obviously, introduction of disjunctive actions does not violate any safety
properties. There are, however, two things to be noticed in connection with
them.

Firstly, it may not be possible to preserve fairness properties for the in-
dividual actions if they are replaced by corresponding disjunctive actions or
stuttering relaxations. Therefore, such replacements are not always possible.

Secondly, a disjunctive action or stuttering relaxation no longer has unique
ancestors in the predecessor layers, which weakens the abstractions provided
by these layers, and also complicates (or prevents) composition with other
branches of refinement. When these restrictions are not considered important
(and fairness properties can be preserved), disjunctive actions provide a useful
mechanism for refining specifications.

6.4.5 Concatenated Actions

As the opposite of refining the atomicity of actions, one may also wish to
combine actions of the same layer into larger atomic actions. Semantically,
such concatenated actions can be defined as

s[[A(x) ◦ B(y)]]t
∆
= ∃u : (s[[A(x)]]u ∧ u[[B(y)]]t) ,

where ‘◦’ is the concatenation operator. The effect of such an action is exe-
cuting A(x) and B(y) sequentially, but only in situations where B(y) is enabled
after executing A(x).

Similarly to disjunctive actions, concatenated actions also weaken the ab-
stractions provided by the predecessor layers, and complicate (or prevent)
composition with other branches of refinement.
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Two special cases of action concatenation will be used in this book. These
and the associated effects on preservation of logical properties will be discussed
below.

Simple Concatenation

Concatenation A(x) ◦ B(y) seems especially natural in situations where B(y)
is always enabled after executing A(x), i.e., when

�[A(x) ⇒ Enabled ′ B(y)] (6.15)

holds in the imported layer in question.8 Under this condition we will use the
special notation

A(x) ; B(y)

for concatenation. In terms of the action language, the guard of B can then
be totally omitted from the resulting action.

Combined Actions

When the participants in the two instances A(x) and B(y) are different, and
the global variables used in them are also different, it would seem natural
to ‘synchronize’ them by combining their guards and their bodies. Although
similar to action synchronization in terms of the action language, this is not
real synchronization, since the implicit stuttering assignments in the actions
would make their logical conjunction identically false, in general.

If the guard of B is denoted by gB, this construction corresponds to the
simple concatenation

(gB(y) ∧ A(x)) ; B(y) ,

with condition (6.15) trivially satisfied. A special notation

A(x) & B(y)

is introduced for this construction, and the resulting action is called a com-
bined action. The use of this construction will be restricted to the symmetric
situations described above, and A(x) & B(y) is then identical to B(y) & A(x).

Effects on Preservation of Properties

Concatenation of actions removes the intermediate states between their execu-
tion. As a consequence, safety properties are then also violated, in general, but
only in a restricted manner. All state invariants, for instance, are preserved.

8If � contains non-participant parameters, their values are assumed to be evalu-
ated before executing

� � � � , not after it.
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As discussed in Chap. 2, state variables are divided into essential variables
and auxiliary variables, of which the latter correspond to hidden or quantified
state variables in TLA. Although this distinction is not indicated in the action
language, we say that a safety property is essential if it involves only variables
that are considered essential.

If at most one of A(x) and B(y) modifies essential state variables, then all
essential safety properties are preserved by the introduction of their concate-
nation. When action concatenation is utilized, one therefore has to check that
this condition is satisfied.

As for liveness properties, two things have to be noticed. Firstly, removing
intermediate states may remove states in which some fair actions would be
enabled. Therefore, preservation of such fairness properties has to be checked.

Secondly, if there are fairness requirements on the actions that are concate-
nated, then it may be impossible to preserve the associated liveness properties
as such, since concatenated actions are not refinements of their components.
It has to be noted, however, that the fairness properties in question may in-
volve overspecification, in which case their weakening need not be harmful. In
considering liveness properties it may therefore be reasonable to consider that
an execution of a concatenated action is not a single step in a behavior but a
sequence of individual steps. If the liveness properties of the imported layer
are satisfied by such modified behaviors, then it is in most cases reasonable
to consider that the intended liveness properties are satisfied.

Review Questions

Question 6.4.1 How can guards be simplified?

Question 6.4.2 How can variables be effectively removed in superposition?

Question 6.4.3 What is meant by ghost variables, and what is their role in
specifications?

Question 6.4.4 What is the problem in refining the atomicity of actions in
superposition?

Question 6.4.5 Why is a combined action not equivalent to logical conjunc-
tion?

Question 6.4.6 What are the precautions in using concatenated actions?

Exercises

Exercise 6.4.1 Elaborate on the difference between the stuttering closure
(defined in Sect. 3.3.6, p. 72) and the stuttering relaxation of actions (defined
in Sect. 6.4.4, p. 187).
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Exercise 6.4.2 How could a concatenated action be constructed from its
components in the action language in the general case?

Exercise 6.4.3 Give an example of a safety property that is violated by
combining two actions.

Exercise 6.4.4 Give a simple example where an action with a fairness re-
quirement is replaced by a concatenated action, and elaborate on the non-
preservation/preservation of the associated liveness properties.

6.5 Example: Pocket Calculator

Finally, the use of superposition and composition will be illustrated by two
examples of developing layered specifications. The first example is a simpli-
fied stack-based pocket calculator. Its purpose is to demonstrate how different
aspects of a specification can be addressed in independent branches of refine-
ment in an aspect-oriented manner and then composed.

Stack

OverflowInput Operations

Composition

Fig. 6.7. Layered structure of a pocket-calculator specification

6.5.1 Overall Plan

The overall plan of the specification is illustrated in Fig. 6.7. The initial layer,
Stack, specifies the common framework – an operand stack – for the different
aspects, which deal with entering of numbers, implementing the operations,
and handling of overflow, respectively. The final specification is obtained by
composing the layers in which these three aspects are addressed separately.

The development follows the idea of bottom-up development in the sense
that the initial layer gives no formal requirements for the total system.
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6.5.2 Operand Stack

The first layer, Stack, is given as a slight modification of the initial layer in
Sect. 6.1.5 (p. 166). The operand stack s is specified as a list of real numbers,
initialized as an empty list 〈〉,

s : list R (〈〉) .

Using the type R means only that the values in the stack are real numbers,
not that arbitrary real numbers should be representable in it. As for standard
functions on lists, we now assume that first(s) gives either the first element of
list s or 0, depending on whether s is nonempty or not, and that rest(s) gives
either the rest of s as a list, or an empty list if s has less than two elements.

Push and pop actions for the stack can now be given as

Push(x : R) : T→ s ′ = 〈x〉 ◦ s ,

Pop(x : R) : x = first(s)→ s ′ = rest(s) .

Since arithmetic operations will also modify the stack, they have also to
be introduced in some form at this level. We give them as generic monadic
and dyadic operations for the topmost value(s) in the stack as follows:

Monadic(x, z : R) : x = first(s)→ s ′ = 〈round(z)〉 ◦ rest(s) ,

Dyadic(x, y, z : R) : x = first(s)
∧ y = first(rest(s))→ s ′ = 〈round(z)〉 ◦ rest(rest(s)) .

Operands (x and y) and the result (z) are given here as parameters, which
makes it easier to access them in later refinements. The value of the result (z)
is left open at this stage, but its rounded value, assumed to be obtained by
function round(z), is stored in the stack. Overflow situations will be addressed
separately below.

6.5.3 Entering Numbers

One aspect that can be addressed independently of other aspects is how num-
bers are keyed in. Modifying again the example in Sect. 6.1.5 (p. 166), we
introduce layer Input, which imports Stack and has a new variable temp,

temp : N (0) ,
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and new actions

Clear : Stack.Stutter→ temp ′ = 0 ,

Digit(d : N) : Stack.Stutter

∧ 0 ≤ d ≤ 9

∧ temp < 10N−1

→ temp ′ = 10 × temp + d ,

Cancel : Stack.Stutter→ temp ′ = (temp − temp mod 10)/10 .

Of these, action Clear clears temp, Digit models entering a number of at
most N digits to temp, and Cancel cancels the last digit entered. For sim-
plicity, we allow entering of natural numbers only, and omit specifying the
display of numbers.

The number entered into temp can now be pushed to the stack by a
refinement of action Push,

Enter : Stack.Push(temp) .

In addition, two other refinements of Push are included, one that pushes an-
other copy of the top element to the stack, and the other that can be used for
further refinements, if found necessary in later design steps:

Push top : Stack.Push(first(s)) ,

Push(x : R) : Stack.Push(x) .

Default refinements are assumed for actions Pop, Monadic, and Dyadic.

6.5.4 Operations

In layer Operations, arithmetic operations are defined as refinements of ac-
tions Monadic and Dyadic.

As the only monadic operation we take Neg, which negates a number:9

Neg(x : R) : Stack.Monadic(x, −x) .

As dyadic operations we take the four usual arithmetic operations:

Plus(x, y : R) : Stack.Dyadic(x, y, x + y) ,

9Notice that the values of parameters � and � in these actions have been uniquely
determined already in layer Stack. Here these parameters are reintroduced only for
the purpose of defining how the result values depend on them.
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Minus(x, y : R) : Stack.Dyadic(x, y, x − y) ,

Times(x, y : R) : Stack.Dyadic(x, y, x × y) ,

Divide(x, y : R) : Stack.Dyadic(x, y, x/y) .

When these are given as the only refinements of Monadic and Dyadic, no
other operations can be introduced for the stack in later design steps.

Other actions of layer Stack are taken into Operations as their default
refinements.

6.5.5 Overflow

To record overflow situations in layer Overflow, two exclusive states are in-
troduced,

state Normal∗, Ofl .

Checking of overflow and prevention of further calculations when an overflow
has occurred can then be included in actions Monadic and Dyadic by refining
them into

Monadic(x, z : R) : Stack.Monadic(x, z)

∧ Normal→ if |z| > Max then Ofl ′ else Normal ′ ,

Dyadic(x, y, z : R) : Stack.Dyadic(x, y, z)

∧ Normal→ if |z| > Max then Ofl ′ else Normal ′ ,

where Max is the limit that numbers are assumed not to exceed without
causing overflow.

A refinement of action Pop can now reset the overflow indication, and
remove the overflow value from the top of the stack:

Reset : Stack.Pop(first(s))
∧ Ofl→ Normal ′ .

Another refinement will keep Pop available for other purposes, including later
refinements of it,

Pop(x : R) : Stack.Pop(x)

∧ Normal ,

and a refinement of Push makes sure that overflow values are not pushed
deeper into the stack,

Push(x : R) : Stack.Push(x)

∧ Normal .



194 6 Fundamentals of Design Methodology

6.5.6 Composition

In layer Composition the three independent refinements are brought together.
In this case we can use a simple composition, where no new variables or ini-
tial conditions are introduced, and all possible action synchronizations are
included without any further refinements. (The unification condition obvi-
ously requires the parameters to be the same in the action instances that are
synchronized.)

The ancestor histories of the resulting actions are shown in Fig. 6.8. For
simplicity some related actions have been grouped together, and those ances-
tors have been omitted that are either stuttering actions or default refinements
of their ancestors. The names for actions in Composition have been chosen
from suitable ancestors.

Notice that the new actions introduced in layer Input cannot be synchro-
nized with any non-stuttering actions in the other layers. Action Push has
been given three refinements in Input and one in Overflow. In the composi-
tion this leads to three pairwise combinations, where the overflow checking,
which was given in Overflow.Push, is added to each of the refinements given
in Input.

Synchronizing the refinements of Monadic and Dyadic leads to the arith-
metic operations specified in Operations, combined with the overflow check-
ing added to them in Overflow.

6.5.7 Discussion

The purpose of this example was to illustrate how different aspects of a spec-
ification can be addressed independently in different paths of refinement. In
this case we started from a crude initial model, where only the very basic
decisions were made, and other design decisions were then superposed on this
initial model.

Each layer in the resulting specification is a correct but restricted view of
behaviors in the final specification. Therefore, properties that relate only to a
given aspect can be inspected from a layer where other aspects are not visible
and therefore do not confuse this inspection. Obviously, when the interplay of
different aspects is concerned, one has to look at the layer where these aspects
are brought together.

The example also illustrates how the rigor of the specification process may
prevent subsequent addition of new features without revising some earlier lay-
ers of specification. For instance, if a need for additional arithmetic operations
arises in later steps, this would require revision of layer Operations. On the
other hand, the purpose of leaving actions Push and Pop also as such in layer
Composition is to allow later refinements where the stack may communicate
with variables that have not yet been included in the specification.

No fairness requirements were relevant for this specification. Therefore,
preservation of liveness properties was not an issue, and each step was trivially
guaranteed to produce a refinement of the preceding layers.
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Fig. 6.8. Ancestor relations for pocket-calculator actions

Exercises

Exercise 6.5.1 Write out the final actions in the pocket-calculator example
in their complete forms, and simplify them, if possible.

Exercise 6.5.2 Augment the pocket-calculator specification with read and
write operations for memory cells.
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Exercise 6.5.3 Discuss augmenting the pocket-calculator specification with
a display. At which place would you put this in the layered structure?

Exercise 6.5.4 An unbounded stack was assumed in the pocket-calculator
specification. Consider different ways to modify it to use a bounded stack.

6.6 Example: Resource Allocation

The second example of this chapter concerns non-preemptive resource alloca-
tion for distributed processes in a situation where each resource r ∈ R can be
assigned to at most one process p ∈ P at a time. In addition to illustrating
a somewhat different use of superposition-based design techniques than the
pocket-calculator example above, it also provides an example of using some of
the techniques introduced in Sect. 6.4 (p. 185) for overcoming the limitations
of pure superposition.

Basis

Simple Users Allocator

Distributed

Users
Mess

Allocation

System

Fig. 6.9. Layers in a specification of resource allocation

6.6.1 Overall Plan

The overall plan for this specification is illustrated in Fig. 6.9. We start with
layer Basis, where classes P and R are introduced for the processes and the
resources, respectively, and which specifies the basic requirement that each
resource r ∈ R can be used by at most one process p ∈ P at any time. Since
formulating this leads to quantification over all processes p ∈ P in an action
guard, this high-level specification does not describe a solution that would be
directly implementable for distributed processes.
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The two aspects that are then elaborated in independent branches of
refinement correspond to the views of the distributed processes p ∈ P

(layers Simple Users and Distributed Users) and of the allocator (layer
Allocator), respectively. In the former, the initial layer Basis is refined so
that the requirement is also included that a process will eventually obtain
a requested resource, unless it cancels the request before this has happened.
The allocator’s view, on the other hand, expresses fair treatment of allocation
requests.

An auxiliary, independent layer Mess models process communication by
asynchronous messages, to be used in composing the two aspects into layer
Allocation System. Finally, the actions of the composed specification will be
simplified in order to show their distributed implementability.

The development follows the idea of top-down development in the sense
that the root layer Basis already specifies the most crucial overall require-
ment, which is then made implementable in a distributed fashion by the sub-
sequent steps. The requirement for fair access to resources is, however, not
yet introduced in the initial layer.

The use of an independent layer Mess for process communication adds the
use of an independent specification component to this development process.

6.6.2 Basis

In the initial layer Basis, let P and R stand for the classes of user processes
p ∈ P and resources r ∈ R, respectively. For simplicity we assume each of
these to have a unique identification attribute p.id (r.id), which is a natural
number,

class P = {const id : N} , ∀p, q ∈ P : (p �= q ⇒ p.id �= q.id) ,

class R = {const id : N} , ∀r, s ∈ R : (r �= s ⇒ r.id �= s.id) .

Relation Using is introduced at this level for indicating that a user process
is currently using a resource,

relation (0..1)·Using·(∗) : P × R (∅) ,

and its declaration also expresses the intended property that no resource is
used by more than one process at any time.

The actions of this basic layer will just model how processes take resources
into use, and how they will release them:

Take(p : P; r : R) : ¬∃q ∈ P : (q·Using·r)→ p·Using ′ ·r ,

Release(WFp : P; WFr : R) : p·Using·r→ ¬p·Using ′ ·r .
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Fig. 6.10. State transitions in the basic layer

Obviously, the guard in Take ensures the intended safety property for the
relation Using, and the fairness requirement on Release guarantees that each
user process will eventually release any process that it is using. Figure 6.10
illustrates the associated transitions for an arbitrary pair p ∈ P, r ∈ R.

6.6.3 Simple User Processes

In layer Simple Users we start elaborating the specification from the view-
point of user processes.

In order to distinguish the state when process p ∈ P needs a resource r ∈ R,
which need not be immediately available, class P is extended with a set-valued
attribute need to indicate those resources that are needed by p but not yet
obtained by it. Another attribute, use, is also added for representing locally
that part of relation Using that concerns process p. This gives us extensions:

class P = {. . . need, use : set N (∅)} .

The intended invariants for these attributes are that, for each p ∈ P, the
values of p.need and p.use are disjoint sets that contain only identification
numbers of existing resources, and that variables p.use provide a representa-
tion for the relation Using:

�(n ∈ (p.need ∪ p.use) ⇒ ∃r ∈ R : (r.id = n)) , (6.16)
�(p.need ∩ p.use = ∅) , (6.17)

�(r.id ∈ p.use ⇔ p·Using·r) . (6.18)

The actions of layer Simple Users can now be given as

Request(p : P; r : R) : Basis.Stutter

∧ r.id /∈ (p.need ∪ p.use)→ p.need ′ = p.need ∪ {r.id} ,

Take(p : P; r : R) : Basis.Take(p, r)

∧ r.id ∈ p.need→ p.need ′ = p.need \ {r.id}

∧ p.use ′ = p.use ∪ {r.id} ,
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Fig. 6.11. A simple view of user processes

Cancel(p : P; r : R) : Basis.Stutter

∧ r.id ∈ p.need→ p.need ′ = p.need \ {r.id} ,

Release(WFp : P; WFr : R) : Basis.Release(p, r)→ p.use ′ = p.use \ {r.id} .

As a result, the transitions of Fig. 6.10 have been refined as illustrated in
Fig. 6.11.

For these actions it is easy to check that the intended invariants (6.16)–
(6.18) are, indeed, satisfied, and that the liveness properties of the basic layer
are also preserved.

It would be tempting to add a strong fairness assumption to action Take,
to ensure that processes p ∈ P have fair access to resources r ∈ R, when
these eventually become available. The possibility to cancel a need by action
Cancel complicates the situation, however, since we do not wish to exclude
the possibility that a process always cancels a need for a resource, if this is
never obtained soon enough, for instance.

The liveness property that should be satisfied but cannot be properly
achieved with fairness requirements on these actions is

WF(Take(p, r) ∨ Cancel(p, r)) . (6.19)

Being symmetric with respect to actions Take and Cancel, this would not,
however, prevent an implementation where action Take is not implemented at
all, and therefore does not properly describe the intended liveness property.

Although proper modeling of the intended liveness property would be pos-
sible already at this level (see Exercise 6.6.6), we postpone further discussion
of it to the stage where the complete specification is formed.
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6.6.4 Distributed Users

Layer Distributed Users is a refinement of Simple Users. In it we an-
ticipate a distributed implementation, where communication between pro-
cesses takes place by asynchronous messages. Therefore, user processes can-
not proceed freely after actions Cancel and Release, as was the case in layer
Simple Users. Instead, they have to wait until an anticipated allocator has
been able to recognize these transitions.

To model such a refined view, class P is extended with two additional
set-valued attributes,

class P = {. . . cncl, rel : set N(∅)} ,

which indicate the resources for which the process is canceling its requests
before obtaining them, and those that it is releasing after using them, respec-
tively.

As intended invariants, p.cncl and p.rel are assumed to contain identi-
fication numbers of existing resources, and they are assumed to be disjoint
from each other and also from p.need and p.use:

�(n ∈ (p.cncl ∪ p.rel) ⇒ ∃r ∈ R : (r.id = n)) , (6.20)
�(p.cncl ∩ p.rel = ∅) , (6.21)

�((p.cncl ∪ p.rel) ∩ (p.need ∪ p.use) = ∅) . (6.22)

Figure 6.12 shows the intended refinement of Fig. 6.11. Actions Cont 1
and Cont 2 are new actions that have been inserted for the purpose described
above. The reason why a canceled request leads to two consecutive stages of
waiting is that the anticipated allocator is expected to react separately both
to a request and to its cancelation.

Weak fairness on actions Cont 1 and Cont 2 is obviously sufficient to en-
sure that the associated waitings will eventually terminate. In the case when
a resource is obtained, it is action Take that models the termination of the as-
sociated waiting. However, for reasons that were explained above, no fairness
assumption on it is directly suitable for modeling its eventual execution.

Actions of this layer can now be given as follows:

Request(p : P; r : R) : Simple Users.Request(p, r)

∧ r.id /∈ (p.cncl ∪ p.rel) ,

Take(p : P; r : R) : Simple Users.Take(p, r) ,

Release(WFp : P; WFr : R) : Simple Users.Release(p, r)→ p.rel ′ = p.rel ∪ {r.id} ,

Cancel(p : P; r : R) : Simple Users.Cancel(p, r)→ p.cncl ′ = p.cncl ∪ {r.id} ,
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Fig. 6.12. Transitions in layer Distributed Users

Cont 1(WFp : P; WFr : R) : Simple Users.Stutter

∧ r.id ∈ p.cncl→ p.cncl ′ = p.cncl \ {r.id}

∧ p.rel ′ = p.rel ∪ {r.id} ,

Cont 2(WFp : P; WFr : R) : Simple Users.Stutter

∧ r.id ∈ p.rel→ p.rel ′ = p.rel \ {r.id} .

It is easy to check that the intended invariants that were given above are,
indeed, satisfied, and that the fairness properties of the previous layer are also
preserved. Fair access to resources r ∈ R has not yet been modeled, however.

6.6.5 Allocator

As the next step we elaborate how the initial layer Basis can be refined from
the viewpoint of the allocator process. In layer Allocator we introduce a
singleton allocator class A with two set-valued attributes, req, which for each
allocation request of resource r by process p will contain a pair (p.id, r.id),
and alloc, which will contain similar pairs for all allocations performed:

class (1) A = {req, alloc : set N × N(∅)} .

The intended invariants for these attributes are that the pairs identify
existing processes and resources, the two sets are disjoint, no resource has
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been allocated to more than one process, and that a process p cannot be
using a resource r unless this has been allocated to it:

�((x, y) ∈ (a.req ∪ a.alloc) ⇒ ∃p ∈ P, r ∈ R : (p.id = x ∧ r.id = y)) ,

(6.23)

�(a.req ∩ a.alloc = ∅) , (6.24)
�((p.id, r.id) ∈ a.alloc ∧ (q.id, r.id) ∈ a.alloc ⇒ p = q) , (6.25)
�(p·Using·r ⇒ (p.id, r.id) ∈ a.alloc) . (6.26)

Enqueuing and dequeuing of allocation requests and decisions can now be
added to the system in terms of the following actions:

Enq(p : P; r : R; a : A) : Basis.Stutter

∧ (p.id, r.id) /∈ (a.req ∪ a.alloc)→ a.req ′ = a.req ∪ {(p.id, r.id)} ,

Deq(p : P; r : R; a : A) : Basis.Stutter

∧ (p.id, r.id) ∈ a.req→ a.req ′ = a.req \ {(p.id, r.id)} ,

Alloc(SFp : P; SFr : R; a : A) : Basis.Stutter

∧ (p.id, r.id) ∈ a.req

∧ ¬∃q ∈ P : (q.id, r.id) ∈ a.alloc→ a.req ′ = a.req \ {(p.id, r.id)}

∧ a.alloc ′ = a.alloc ∪ {(p.id, r.id)} ,

Take(p : P; r : R; a : A) : Basis.Take(p, r)

∧ (p.id, r.id) ∈ a.alloc ,

Release(WFp : P; WFr : R) : Basis.Release(p, r) ,

Dealloc(SFp : P; SFr : R; a : A) : Basis.Stutter

∧ (p.id, r.id) ∈ a.alloc

∧ ¬p·Using·r→ a.alloc ′ = a.alloc \ {(p.id, r.id)} .

The fairness properties of layer Basis are obviously preserved, and the fair-
ness requirements on actions Alloc and Dealloc ensure fulfilling of allocation
requests in a fair manner. The refinement of action Take also guarantees that
only allocated resources are taken into use by the processes.

Figure 6.13 now illustrates how the transitions in Fig. 6.10 (p. 198) have
been refined in this layer. Notice the possibility to deallocate a resource with-
out actions Take and Release taking place, which is needed (only) for the
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Fig. 6.13. Allocator transitions

situation where the request has been canceled. At this level it is also possible
for a process to retake a resource if it has not yet been deallocated from it.
This possibility will, however, be removed in the composed system.

6.6.6 Messages

In a distributed situation, communication between remote user processes and
an allocator takes place by messages. Facilities for this are introduced here in
a separate layer Mess.

Messages will be represented as objects of a non-empty class M, where the
local state indicates whether the message is an ‘unused frame for a message’
or ‘in use’ and, if it is in use, then it also contains message type and contents:

class M = {state Unused∗, In use;

where In use = {type, cont : U}} .

Two actions are given at this level to model sending and receiving of a
message with given type and contents:

Send(m : M; t, c : U) : m.Unused→ m.In use ′

∧ m.type ′ = t

∧ m.cont ′ = c ,
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Rec(WFm : M; t, c : U) : m.In use

∧ m.type = t

∧ m.cont = c→ m.Unused ′ .

Weak fairness in Rec expresses the reliability requirement that each message
that has been sent will also eventually be received. Messages that have been
sent may, however, be received in any order.

For simplicity we will assume in the following that class M is infinite. This
means that there is no bound for the number of messages that have been
sent but not yet received. The minimum size of M that is sufficient for this
example is considered in Exercise 6.6.3.

6.6.7 Composed System

The idea of the final specification Allocation System is to compose layers
Distributed Users, Allocator, and Mess so that asynchronous messages
are used for the communication between user processes p ∈ P and the allo-
cator a ∈ A. Only two message types will be used: type req will indicate a
message from user processes to the allocator, and type ack will indicate a
response message from the allocator. The message contents will always be a
pair (p.id, r.id).

This gives us the following intended message invariants for all m ∈ M:

�(m.In use ⇒ m.type = req ∨ m.type = ack) , (6.27)
�(m.In use ⇒ ∃p ∈ P, r ∈ R : m.cont = (p.id, r.id)) . (6.28)

The intended use of messages is the following:

• Each of actions Request, Cancel, and Release sends a req message to the
allocator, which will then receive them in actions Enq, Deq, and Dealloc.

• Actions Alloc and Dealloc send an ack message to a user process, and
action Deq sends two such messages. These messages will be received in
actions Take, Cont 1, and Cont 2.10

Notice that, since messages may be received in an arbitrary order, the req

message received in action Enq may also be one that was sent in action Cancel,
in which case the one sent in Request has not yet been received. Similarly, the
ack message received in action Cont 1 may have been sent either by action
Deq or by action Alloc. This is the reason why a single ack message is not
sufficient when action Deq responds to a canceling request.

10Each execution of action Take
� �

�

� � then requires a preceding execution of
Alloc

� �
�

�
�

� � , which removes the possibility for repeating Take
� �

�

� � without an
intervening execution of Dealloc

� �
�

�
�

� � , which was possible in layer Allocator.
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The intended invariants expressing the states that are concurrently possi-
ble for a user process and the allocator, as well as for the messages that have
been sent but not yet received, can be formulated as the reachability graph
given in Fig. 6.14 for an arbitrary pair p ∈ P, r ∈ R. The first line in each
node indicates whether r.id is in p.need, p.use, p.cncl, p.rel, or in none
of them; the second line indicates whether (p.id, r.id) is in a.req, a.alloc,
or in none of these; the third line indicates the numbers of non-received req

and ack messages with contents (p.id, r.id). Obviously, the graph, which has
been drawn in the shape of Fig. 6.12 (p. 201), is a refinement of those given
in Figs. 6.12 and 6.13.

The actions of the composed system can now be given as follows:

Request(p : P; r : R; m : M) : Distributed Users.Request(p, r)

∧ Mess.Send(m, req, (p.id, r.id))

∧ Allocator.Stutter ,
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Enq(p : P; r : R; a : A; WFm : M) : Distributed Users.Stutter

∧ Mess.Rec(m, req, (p.id, r.id))

∧ Allocator.Enq(p, r, a) ,

Deq(p : P; r : R; a : A; WFm1, m2 : M) : Distributed Users.Stutter

∧ (Mess.Rec(m1, req, (p.id, r.id));

Mess.Send(m1, ack, (p.id, r.id)))

& Mess.Send(m2, ack, (p.id, r.id))

∧ Allocator.Deq(p, r, a) ,

Alloc(SFp : P; SFr : R; a : A; m : M) : Distributed Users.Stutter

∧ Mess.Send(m, ack, (p.id, r.id))

∧ Allocator.Alloc(p, r, a) ,

Take(p : P; r : R; a : A; WFm : M) : Distributed Users.Take(p, r)

∧ Mess.Rec(m, ack, (p.id, r.id))

∧ Allocator.Take(p, r, a) ,

Release(WFp : P; WFr : R; m : M) : Distributed Users.Release(p, r)

∧ Mess.Send(m, req, (p.id, r.id))

∧ Allocator.Release(p, r) ,

Dealloc(p : P; r : R; a : A; WFm : M) : Distributed Users.Stutter

∧ Mess.Rec(m, req, (p.id, r.id));

Mess.Send(m, ack, (p.id, r.id))

∧ Allocator.Dealloc(p, r, a) ,

Cancel(p : P; r : R; m : M) : Distributed Users.Cancel(p, r)

∧ Mess.Send(m, req, (p.id, r.id))

∧ Allocator.Stutter ,

Cont 1(p : P; r : R; WFm : M) : Distributed Users.Cont 1(p, r)

∧ Mess.Rec(m, ack, (p.id, r.id))

∧ Allocator.Stutter ,

Cont 2(p : P; r : R; WFm : M) : Distributed Users.Cont 2(p, r)

∧ Mess.Rec(m, ack, (p.id, r.id))

∧ Allocator.Stutter .

Actions of layer Mess have been concatenated (see Sect. 6.4.1, p. 185) here
in two cases (actions Deq and Dealloc). The assumption of an infinite number
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of message objects makes it easy to check that condition (6.15) on p. 188 for
simple concatenation is satisfied in these cases. Since message objects have
an auxiliary role only, no essential safety properties are violated by having
the intermediate states removed in these cases. It is easy to see that fairness
requirements with respect to any other actions are not violated by this, either
(see discussion of preservation of properties in concatenation, p. 188).

Action concatenation has, however, the effect that the fairness require-
ment that was given in layer Mess for action Mess.Rec is no longer satisfied.
This requirement can, however, be understood as overspecification, the in-
tended liveness property being only that each message that has been sent
will eventually be received. If the executions of these concatenated actions
are understood as sequences of steps, instead of single steps (see discussion
of preservation of properties in concatenation, p. 188), then the associated
fairness properties would be preserved. This can be taken as justification for
concluding that the intended liveness properties are still satisfied. For further
consideration of this issue, see Exercise 6.6.4.

The satisfaction of the intended safety properties (6.27) and (6.28) can
be immediately checked. Those given in terms of the reachability graph of
Fig. 6.14 can also be easily shown by checking that the graph describes cor-
rectly the possible effects of all actions.

As for the crucial liveness property (6.19) on p. 199, it would now be
satisfied even if action Cancel were removed from the system, which prevents
the trivial implementation where action Take is omitted. The satisfaction of
(6.19) can be checked by the following lines of reasoning, based on the fairness
assumptions and on the safety properties expressed in the reachability graph
of Fig. 6.14:

• If action Request(p, r, m) has been executed and r.id ∈ p.need stays
persistently true (i.e., the need is not canceled), weak fairness for Enq
guarantees that the request (p.id, r.id) will eventually enter a.req and
stay there until either Cancel or Alloc is executed for it.

• If the resource has been allocated to some other process, i.e., action Alloc
is not enabled for p and r, fairness on actions Deq, Take, Release, Dealloc,
Cont 1, and Cont 2 guarantees that ¬∃q ∈ P : (q.id, r.id) ∈ a.alloc will
be repeatedly true, enabling action Alloc for p and r (unless action Cancel
is executed for p and r).

• Strong fairness on Alloc with respect to the pair (p, r) will then ensure
its eventual execution for this pair (unless action Cancel is executed for
it before this).

• Action Take will then stay enabled for p and r until either it or Cancel
is executed for the pair. Weak fairness on Take therefore guarantees that
one of these actions is eventually executed.
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6.6.8 Simplification for Distributed Implementation

Although the composed system satisfies all the required logical properties,
its distributed implementability, which was the whole purpose of the speci-
fication, is not yet obvious, since processes p ∈ P, resources r ∈ R, and the
allocator a ∈ A all appear as participants in many of the actions. Therefore,
the specification needs to be simplified so that a process p and the allocator
a are not both involved in any action, and that resources r are also removed
from being participants.

As an example, consider action Take of the final specification. It can be
mechanically written out from the implied actions as follows:

Take(p : P; r : R; a : A; WFm : M) : ¬∃q ∈ P : (q·Using·r)
∧ r.id ∈ p.need

∧ m.In use

∧ m.type = ack

∧ m.cont = (p.id, r.id)

∧ (p.id, r.id) ∈ a.alloc→ p·Using ′ ·r
∧ p.need ′ = p.need \ {r.id}

∧ p.use ′ = p.use ∪ {r.id}

∧ m.Unused ′ .

To simplify this, we notice the following:

• On account of (6.18) on p. 198, relation Using has been turned into a
ghost variable and can be removed (see Sect. 6.4.2, p. 186). When its
occurrences in guards are replaced by the use of variables p.use, p ∈ P, its
modifications in bodies can also therefore be omitted. In particular, the
first conjunct in the above guard is then replaced by ¬∃q :∈ P : r.id ∈
p.use, and assignment p·Using ′ ·r is removed.

• By invariants (6.17) and (6.18) on p. 198, and (6.25) and (6.26) on p. 202,
implication

r.id ∈ p.need ∧ (p.id, r.id) ∈ a.alloc ⇒ ¬∃q ∈ P : r.id ∈ q.use

holds in all reachable states, which makes the first conjunct in the guard
redundant (see Sect. 6.4.1, p. 185).

• On account of the safety properties expressed in the graph of Fig. 6.14,
implication

r.id ∈ p.need ∧ m.In use ∧ m.type = ack ⇒ (p.id, r.id) ∈ a.alloc

holds in all reachable states, which also makes conjunct (p.id, r.id) ∈
a.alloc in the guard redundant.
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• Since a is no longer needed in the action, it can be omitted as a participant
(see Sect. 6.4.1, p. 185). The required existence of an object a ∈ A cannot
obviously be violated in this case.

• Resource r can be omitted as a participant by taking r.id as a new param-
eter x (see Sect. 6.4.1, p. 185). The required existence of a resource r ∈ R

with r.id = x is guaranteed by x ∈ p.need and invariant (6.16) on p. 198.

This leads to a simplified action

Take(p : P; WFm : M; x : N) : m.In use

∧ m.type = ack

∧ m.cont = (p.id, x)

∧ x ∈ p.need→ p.need ′ = p.need \ {x}

∧ p.use ′ = p.use ∪ {x}

∧ m.Unused ′ ,

which can be executed by process p alone, when it receives message m in a
state where x ∈ p.need.

Similar simplification gives us the following further actions to be executed
by the processes p ∈ P:

Request(p : P; m : M; x : N) : ∃r ∈ R : (r.id = x)

∧ x /∈ (p.need ∪ p.use ∪ p.cncl ∪ p.rel)

∧ m.Unused→ p.need ′ = p.need ∪ {x}

∧ m.In use ′

∧ m.type ′ = req

∧ m.cont ′ = (p.id, x) ,

Release(WFp : P; m : M; WFx : N) : x ∈ p.use

∧ m.Unused→ p.use ′ = p.use \ {x}

∧ p.rel ′ = p.rel ∪ {x}

∧ m.In use ′

∧ m.type ′ = req

∧ m.cont ′ = (p.id, x) ,
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Cancel(p : P; m : M; x : N) : x ∈ p.need

∧ m.Unused→ p.need ′ = p.need \ {x}

∧ p.cncl ′ = p.cncl ∪ {x}

∧ m.In use ′

∧ m.type ′ = req

∧ m.cont ′ = (p.id, x) ,

Cont 1(p : P; WFm : M; x : N) : m.In use

∧ m.type = ack

∧ m.cont = (p.id, x)

∧ x ∈ p.cncl→ p.cncl ′ = p.cncl \ {x}

∧ p.rel ′ = p.rel ∪ {x}

∧ m.Unused ′ ,

Cont 2(p : P; WFm : M; x : N) : m.In use

∧ m.type = ack

∧ m.cont = (p.id, x)

∧ x ∈ p.rel→ p.rel ′ = p.rel \ {x}

∧ m.Unused ′ ,

and the following actions to be executed by the allocator:

Enq(a : A; WFm : M) : m.In use

∧ m.type = req

∧ m.cont /∈ (a.req ∪ a.alloc)→ a.req ′ = a.req ∪ {m.cont}

∧ m.Unused ′ ,

Deq(a : A; WFm1, m2 : M) : m1.In use

∧ m1.type = req

∧ m1.cont ∈ a.req

∧ m2.Unused
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→ a.req ′ = a.req \ {m1.cont}

∧ m1.type ′ = ack

∧ m2.In use ′

∧ m2.type ′ = ack

∧ m2.cont ′ = m1.cont ,

Alloc(a : A; m : M; SFx, SFy : N) : (x, y) ∈ a.req

∧ ¬∃z ∈ N : (z, y) ∈ a.alloc

∧ m.Unused→ a.req ′ = a.req \ {(x, y)}

∧ a.alloc ′ = a.alloc ∪ {(x, y)}

∧ m.In use ′

∧ m.type ′ = ack

∧ m.cont ′ = (x, y) ,

Dealloc(a : A; WFm : M) : m.In use

∧ m.type = req

∧ m.cont ∈ a.alloc→ a.alloc ′ = a.alloc \ {m.cont}

∧ m.type ′ = ack .

As a result, the specification has been shown to be implementable in a
distributed fashion.

6.6.9 Discussion

Pure bottom-up development is usually applied in this kind of a situation.
The behaviors of the distributed processes and the allocator would then be
specified independently, including their use of the available communication
mechanisms. This would mean that the crucial properties of the total system
would emerge only when the components are composed. Verifying that the
requirements are, indeed, satisfied by the resulting system would then be
done in the end, and the reachability graph of Fig. 6.14 (p. 205) would play
an essential role in this.

In contrast, we have by purpose adopted here the design-oriented ap-
proach, where the logical correctness of the composed system is ensured by its
construction. In particular, the satisfaction of the required safety properties is
here straightforward, but, on the other hand, the distributed implementability
of the resulting actions is not. It can therefore be said that we have traded the
verification effort of a verification-oriented approach into the effort of simplify-
ing the resulting actions into a form that can be implemented in a distributed
fashion.
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For the role of the reachability graph, this change of viewpoint means that
this graph is not considered as something to be constructed from the final
system, but as the intended safety properties in its construction.

Exercises

Exercise 6.6.1 Check that the intended safety properties are, indeed, satis-
fied in the specification layers of this section.

Exercise 6.6.2 Modify layer Mess (Sect. 6.6.6, p. 203) so that transmission
delays are also modeled. Would this affect the specification of distributed
resource allocation in any way?

Exercise 6.6.3 If the size of the message class M in layer Mess (Sect. 6.6.6,
p. 203) is 2, is it always possible for the processes to get messages sent?
Modify the solution so that even size 1 is sufficient. How would this affect the
reachability graph of Fig. 6.14 (p. 205)?

Exercise 6.6.4 Modify layer Mess (Sect. 6.6.6, p. 203) so that the intended
liveness property ‘every message that has been sent will eventually be received’
can be formulated in TLA so that it will be also preserved when combined
actions are introduced in the composed system. Hint: introduce auxiliary vari-
ables that help in expressing this property.

Exercise 6.6.5 Check that the actions of the final specification layer have
been simplified correctly in Sect. 6.6.8 (p. 208).

Exercise 6.6.6 Give a slight refinement of layer Simple Users (Sect. 6.6.3,
p. 198), where the intended liveness property is properly modeled. Hint: split
the state where r.id ∈ p.need into two consecutive substates so that action
Cancel is enabled only in the first. How would this affect synchronized actions
in the final composition?
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Instead of treating superposition steps individually, as was done here, one
could support generic superposition steps as suggested by Katz [105, 182] and
also investigated in connection with the DisCo language by Kellomäki [113,
110, 111]. This would make it possible to have libraries of verified superposi-
tions.

As analyzed in [127] and [63], for instance, several different varieties of
superposition can be used. In our terminology, the variety adopted in UNITY
does not allow strengthening of guards. This means that liveness properties
are also then preserved, but its use as a basis for design methods is therefore
more restricted. On the other hand, instead of using superposition for module
composition also, UNITY has a separate ‘union’ mechanism. This provides a
very liberal way to combine specifications textually, but even safety properties
are then not preserved, in general.

The preservation of safety properties in our versions of superposition and
composition has advantages in formal verification also, as discussed by Kel-
lomäki [107, 108, 112]. In particular, [112] demonstrates how superposition-
based decomposition can simplify formal verification of complex specifications.

Related ideas of program derivation have also appeared elsewhere in
various contexts. In connection with the LOTOS language, Bolognesi and
Brinksma have introduced a ‘constraint-oriented specification style’ [26],
which can in our terminology be interpreted as composition of independent
layers. Herrmann and Krumm have applied similar ideas of compositionality
to TLA-based specifications in cTLA [81, 82].

In the form presented here, superposition and composition of closed sys-
tems and the resulting layered specifications were first proposed in connection
with the DisCo language [127, 93]. At a more informal level, composition of
parallel refinement paths was also suggested for specifications by Feather [55].
The use of layered specifications to manage evolving systems has been dis-
cussed by Mikkonen et al. [156, 157, 5].

At the level of programming languages, the need to manage concerns that
cut across several objects has led to aspect-oriented programming, which im-
poses an auxiliary structure of ‘aspects’ on object-oriented programs [115, 51,
183]. The relationship between superposition and aspects was first noted by
Katz and Gil [106].

The process of deriving a specification by superposition can also be re-
versed, yielding a verification method by projections, as presented by Lam
and Shankar [134]. Program slicing, as suggested by Weiser [194], is an anal-
ogous approach to program testing.

For a theoretical treatment of refinement and composition of TLA speci-
fications, the reader is referred to Abadi’s and Lamport’s papers [6, 8]. Com-
position of TLA+ specifications is also discussed extensively in [145].

Data refinement, which is essential to all systematic methods for program
refinement, was first given formal treatment by Hoare [84].
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Object Orientation Elaborated

The notion of a class has been introduced in this book for sets of objects
that have similar local states and actions. So far, different classes have been
treated as if they were disjoint sets of objects. This no longer stays true
with the notions of subclasses and inheritance, which lead to a subset relation
between classes. With multiple inheritance the resulting class system is not
even hierarchical.

Another notion that needs further discussion is that of relations. As in-
troduced in Chap. 5, relations provide a general facility to express arbitrary
dependences between objects. As such this facility is too general to be prac-
tical for certain specific relationships that are important in object-oriented
modeling. Such specific needs appear in aggregation, i.e., when composite ob-
jects are constructed of subobjects.

Facilities to be included in the action language for these purposes will be
discussed and analyzed in this chapter. The plan for the chapter is as follows:

• Section 7.1 is an introduction to the idea of subclasses in closed-system
specifications.

• In Sect. 7.2 we discuss the general structure of a class system, and how
superposition and composition of specification layers affect this structure.

• The role of subclasses in the superposition-based design method is illus-
trated by an example in Sect. 7.3.

• The notion of aggregated objects and the associated subobject relations are
introduced and analyzed in Sect. 7.4. Unlike in programming languages,
this leads to considering subobjects to form special subclasses of those
classes to which they belong.

• Although the intuitions behind aggregation and inheritance are different,
they provide technically somewhat similar mechanisms. Another mecha-
nism that can serve for similar purposes is copying of specification layers.
Section 7.5 is devoted to the analysis of the relationship between these
three mechanisms. The possibilities that are offered by combining sub-
classing and aggregation of the same class are also studied.
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7.1 General Principles

The notions of subclasses and inheritance are of fundamental significance in
object orientation. In programming languages they are usually treated like
any other mechanisms, whose meanings are ultimately explained in terms of
their implementation. Since such an attitude is unsatisfactory in specification,
we start with a brief informal analysis of the meaning of object orientation in
closed-system specifications.

7.1.1 Specification vs. Implementation Concerns

Object orientation is often described to offer two kinds of advantages: reusabil-
ity of designs (and also implementations), and intuitively natural concepts for
modeling. The needs in specification and design are, however, somewhat dif-
ferent from those in implementation (programming). Therefore, reuse in spec-
ification need not concern the same kinds of entities as in programming, and
intuitively natural specification concepts are not obtained simply by adopting
the mechanisms of object-oriented programming languages.

For the purposes of this book it is therefore important to understand
the significance of the following differences between the aims of specification
languages and programming languages:

• The level of abstraction should be higher in specification than in program-
ming. Whereas programming languages need mechanisms by which the
desired properties can be implemented, specification formalisms can use
facilities that are not directly implementable, in general.

• Support for rigorous reasoning is important for specifications. Modeling
concepts in specification formalisms should therefore be evaluated not only
by the constructive possibilities they provide, but especially by their sup-
port for reasoning on logical properties.

• Specifications should be as simple to understand as possible. Therefore, the
execution model for object-oriented specifications should not be obscured
by those non-trivial problems that arise in execution models for object-
oriented programming languages.

• Specification modules are logical modules, which need not correspond to
implementation modules.

7.1.2 Intuitive Meaning of Subclasses

Subclasses are usually explained in terms of an ‘is-a’ relationship, where each
object of a subclass is at the same time also an object of the base class from
which the subclass has been derived. Even the intuitive meaning of this may,
however, vary.

One interpretation, which is important in specification, is that a subclass
models a possible implementation or refinement of its base class. In that case
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the base class can be viewed as an abstraction of the subclass. In the presence
of several subclasses of the same base class, the latter provides a common
abstraction of all of them.

This view is also used in object-oriented programming. There the term
‘abstract class’ usually refers to a class of which no instantiations can be
made as such. That is, each object of an abstract class then has to belong also
to one of its ‘concrete’ subclasses.

Another possible interpretation is that a subclass models a special case
or specialization of the base class. Usually a special case has to satisfy the
properties defined at the more general level, but, in addition, it may also
exhibit constraints of and extensions to these general possibilities.

A more liberal interpretation is that there is some similarity between the
base class and a subclass, which makes it practical to construct the latter as
a modification of the former. In particular, this similarity may concern the
interface of objects to the rest of the world, independently of what the effects
of the ‘methods’ will actually be.

It should be noted that in object-oriented programming the possibilities
for specialization and modification can be much more liberal than what is
useful in formal specification. To serve a useful purpose in specifications, the
subclass relationship has to be helpful in proving formal properties. Similarity
of interfaces, for instance, guarantees nothing about the behavioral properties
of an object. Also, if all properties of the base class could be modified for a
subclass at will, then any class could be defined as a subclass of any other
class, and the subclass relationship would therefore offer no support for formal
reasoning.

7.1.3 Formal Requirements for Subclasses

The formal properties that are considered in our specifications give a formal
interpretation for the ‘is-a’ relation between subclasses and their base classes:
a behavior is not allowed for a subclass if it is not allowed for the base class. As
a consequence, an action for a subclass must logically imply the corresponding
action for the base class. For instance, an action for a subclass may have a
stronger guard – strengthening the guard to be identically false removes an
action – but a specialized action may also provide additional functionality
that is not in conflict with the corresponding action for the base class.

In contrast to this, conventional object-oriented programming languages
lack a precise semantic definition of an ‘is-a’ relation. Therefore, the similarity
or compatibility between subclasses and their base classes is usually considered
at the level of static semantics only, and semantically arbitrary replacements
of methods may be allowed for subclasses.

7.1.4 Classes vs. Layers as Basic Units

Replacing conventional single-object methods of object-oriented programming
by multi-object actions raises the level of abstraction so that behavioral prop-
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erties can be considered rigorously even in early stages of specification. Luckily,
inheritance of methods generalizes in a natural way to inheritance of capabil-
ities to participate in multi-object actions.

Multi-object actions allow the description of collective behaviors in a nat-
ural manner. As already discussed in Sect. 6.3.1 (p. 180), this has the con-
sequence that objects (or classes) are no longer the natural basic units for
modularity. Instead, this role is taken by specification layers, which contain
definitions of cooperating classes and their actions. The notions of classes
and specification layers are, in fact, orthogonal to each other in the sense
that classes and the associated actions can be defined incrementally in several
subsequent layers.

In object-oriented programming it is essential that an object encapsulates
its local variables and has full control of access to them. As discussed in
Sect. 6.3.5 (p. 183), this role of objects (or classes) has been taken here by
layers: a variable can be modified only within the layer in which it is intro-
duced. Furthermore, an action can modify the local states of its participant
objects only.

In principle, layers would also be suitable entities for constraining the
visibility of variables for non-modifying access. No facilities have, however,
been introduced for this purpose here, since this is not considered to be a
fundamental issue for the purposes of this book.

7.1.5 Specifications as Patterns

Describing collective behaviors of objects is associated with the closed-system
principle used in this book. According to this principle, objects are not spec-
ified in isolation, but in the context where they will be used. Instead of
specifying how an arbitrary single object of a given class behaves, a closed-
system specification describes how an arbitrary collection of objects in the
given classes behave in cooperation with each other.

The notion of instances, or instantiations, then extends from classes to
specification layers, which therefore are generic patterns for all possible in-
stantiations of them. In particular, an instantiation of a layer determines the
objects (i.e., instantiations of classes) that are involved in it.

In the absence of global naming of objects, all objects in a class are treated
in a uniform manner as members of this class. Even if a class has been defined
as a singleton class with only one object, this object is referred to as a mem-
ber of its class. With uniform treatment, more specific behaviors can still be
specified for some objects of a class in one of two ways: either a specialized
subclass is introduced for them, or an identification attribute is provided by
which these objects can be distinguished from other objects of the same class.

To see some of the consequences of this, consider the situation where an ob-
ject appears as a component (i.e., subobject) in an aggregate. In conventional
approaches the component could be considered just as a specific instantiation
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of its class. Since the behaviors of such component objects have common char-
acteristics that are more specialized than the general possibilities offered by
the class in question, it is natural in our approach to consider such compo-
nents always to form a subclass of their own. This will be discussed in more
detail in Sect. 7.4.

7.1.6 Incremental Definition of Classes

The crux of the design methodology in this book is that the focus of a speci-
fication is extended incrementally by superposition. As has been shown, this
mechanism can also be used for incremental class extension and for the asso-
ciated refinement of actions.

In object-oriented terminology, an extended class with associated actions
can be understood as a subclass that has inherited from the original class
all its attributes and all its capabilities to participate in actions. Addition
of new attributes and actions, and refinement of inherited actions, are then
considered as specialization.

The extension facility of superposition provides, however, only a restricted
form of subclassing, since the base class does not remain available as such,
or for the derivation of further subclasses. A more general class system is
therefore needed for flexible reuse of previously defined classes.

In terms of our incremental design methodology, the purpose of introducing
subclasses can now be formulated as follows: when the focus of a specification
is extended at a lower level of abstraction, a homogeneous class may be split
into several subclasses, which share all properties of the base class but have,
in addition, more specialized properties.

7.1.7 Effects of the Execution Model

Some well-known intricacies in dealing with subclasses can be attributed to
the low-level execution model of programming languages. In specifications,
such problems can be made non-issues by raising the level of abstraction.
The action-oriented execution model, where single-object ‘methods’ have been
replaced by multi-object actions, has this kind of an effect. This is evident, for
instance, for the problems that arise with ‘dynamic binding’ and concurrent
objects at the level of programming languages.

Dynamic Binding

Dynamic binding means that the exact (sub)class of a referenced object may
vary at run time, and cannot therefore be determined statically. For instance,
when methods are invoked by messages (or method calls) between objects, the
sender (or caller) need not be aware of the exact subclass to which the receiver
(or callee) belongs. Therefore, the same message may lead to different kinds of
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effects, depending on the receiver. Dynamic aspects of (sub)class membership
also lead to a need for run-time tests, when references to objects are used in
assignments.

At the level of programming, these possibilities are important, and dy-
namic binding is therefore often considered essential for object orientation.
Dynamic binding is not, however, needed with the action-oriented execution
model, where the associated problems can therefore also be avoided.

The reason for this is that, unlike conventional methods, actions are not
triggered by explicit calls, and their names therefore have no significance.
Each action definition gives all the necessary information on the (sub)classes
of the participants, and the execution of an action can be triggered implicitly,
whenever it is enabled for some participants. When subclasses are introduced
for a base class, the associated actions may be split into corresponding alter-
natives, but objects of each subclass may still participate in non-specialized
inherited actions without any complications.

Concurrent Objects

The idea of concurrently executing objects, which can call each other’s meth-
ods, sounds intuitively natural and simple. The simplicity is, however, lost
with the possibilities for interference between concurrently active methods of
the same object. This also obscures the role that methods have for reasoning
on object-oriented programs.1

The most natural approach in concurrent object-oriented programming
is to coordinate concurrent execution of methods by those mechanisms that
have been developed in other concurrent programming languages. Combin-
ing such mechanisms with object-oriented inheritance leads, however, to ad-
ditional problems that have been investigated under the name ‘inheritance
anomaly’.

As already discussed in Sect. 5.4.4 (p. 144), explicit communication mech-
anisms are not needed in operational specifications, when multi-object actions
are used, and the associated problems are therefore also avoided. Modeling of
concurrent and distributed objects will be discussed in more detail in Chap. 9.

Review Questions

Question 7.1.1 What is the relationship between subclasses and class ex-
tension in superposition?

Question 7.1.2 What is the purpose of introducing subclasses from the
viewpoint of incremental design?

1The role that methods may have for reasoning is not clear even in the absence
of concurrency, since an object cannot control nested execution of its methods, when
these issue calls to methods in other objects. Agent-oriented techniques have been
proposed as a solution to this problem.
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Question 7.1.3 In what sense are our specifications generic?

Question 7.1.4 Why is ‘dynamic binding’ not an issue in the action-oriented
execution model?

Question 7.1.5 Why are concurrency control mechanisms not needed in the
action-oriented execution model?

7.2 Class System

Basically, classes are sets of objects with certain common characteristics. Class
membership is static in the sense that it cannot be dynamically changed by
the execution of actions.

So far, classes have been assumed in this book to be disjoint sets of objects.
With the notion of subclasses this assumption has to be relaxed. In particular,
a subclass is a subset of its base class.

In this section we analyze in more detail the set-theoretic relations between
classes, and how actions can be specialized for subclasses.

7.2.1 Subclasses

For two different classes C and D, set inclusion D ⊆ C means that all objects
of class D are also objects of class C. We then say that D is a subclass of C,
and that C is a superclass of D.2

For completeness, a dummy root class C0 is assumed, which is a superclass
of all classes. At the other end of the class hierarchy, classes for which no
subclasses have been introduced are called leaf classes.

When class D is constructed as a subclass of another class C, D ⊆ C, then
C is called the base class of D. As a consequence, the complement subclass
C \ D then also arises, which consists of all those objects in C that do not
belong to D. In the absence of this subclass, C and D would actually be
the same. This complement subclass is also necessary for the possibility to
introduce further subclasses of C (which are not subclasses of D) in later
stages of refinement.

Discussion of classes is mathematically simplified by adopting the view
that the class system is closed under set-theoretic operations. That is, if C

and D are classes, then so also are C ∩ D, C \ D, and C ∪ D. Some of these
classes are explicitly constructed and named in a specification; some arise
implicitly and can only be referred to by set-valued expressions.

A simple hierarchical class system is illustrated in Fig. 7.1. The leaf classes
in it are not only D and C2, which have explicit names, but also C1 \ D,

2Technically it is possible to define a class to have exactly the same objects as
the superclass of which it is derived. In this case the classes are actually the same,
and no proper subclass relationship then exists between them.
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Fig. 7.2. Illustration of non-disjoint classes

C \ (C1 ∪ C2), and C0 \ C, which have arisen as a result of the set-theoretic
closure.

A subclass D can also be constructed as a subclass of several base classes
C1, . . . , Ck, k > 1, at the same time. Since we then have D ⊆ Ci for all i,
this is possible only if C1 ∩ · · · ∩Ck �= ∅. The situation is illustrated for k = 2

in Fig. 7.2, where the leaf classes are D, (C1 ∩ C2) \ D, C1 \ C2, C2 \ C1,
C \ (C1 ∪ C2), and C0 \ C.

Introduction of subclasses essentially means refinement of a specification.
For simplicity it will be allowed in the action language only in superposition
and composition steps, and only for imported base classes. Although new
subclasses are usually leaf classes, this need not be true, in general.
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7.2.2 Local Variables of Subclasses

Each class determines the local variables that are available in all objects of
that class. If class D is a subclass of C, D ⊆ C, then the local variables for D

include all those for C, and we say that D has inherited them from C.
In addition to inherited variables, a subclass may have class-specific local

variables, which are not available for its superclasses. Figure 7.1 illustrates
this by showing the class-specific variables for the named classes in it. For
instance, the local variables for class D are the inherited variables x, y, and
z, and a class-specific variable v.

As already mentioned in Sect. 7.1.6 (p. 219), the notion of a subclass is,
in fact, a generalization of class extension. Class extension can be understood
as the special case of a subclass D, D ⊆ C, where C \ D = ∅, in which case
the two classes are actually the same, and no new name is therefore needed
for the subclass.

When the superclasses of a class do not form a strict hierarchy, the term
multiple inheritance is used. In Fig. 7.2, class D inherits local variables from
both C1 and C2, so that its local variables are all the variables shown in this
figure.

Any class C can be extended in a superposition step by extending the
associated set of class-specific local variables. This implicitly extends the set
of local variables in all subclasses of C also.

7.2.3 Explicit Subclasses

Subclasses can be introduced explicitly by (sub)class definitions. In object-
oriented programming languages this is the standard way to create subclasses.

To define a new class D as a subclass of an existing base class C, we use
the format

class D = C + {. . . } ,

where the class-specific local variables of subclass D are given within the
braces. When no base class C is given, the dummy root class C0 is implicitly
assumed. In each case, the base class must be an imported class.

Because of the ‘preexistence’ of all possible variables, introducing a sub-
class should not be understood as creating something new that did not ‘exist’
before, but as a more detailed description of a class, which makes it possible
to recognize distinctions that were not recognizable before. In other words,
all objects of a subclass D were treated as objects of its base class C at those
higher levels of abstraction where no information was available about D.

The base class C can be any class in the class system. For instance, when
classes C1 and C2 overlap, their intersection C1 ∩ C2 can be used as a base
class for a subclass D,

class D = C1 ∩ C2 + {. . . } ,
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which then inherits local variables and actions from both of them. In this
situation of multiple inheritance it is important to notice that objects in the
intersection C1 ∩ C2 needed to exist already before the introduction of D.
That is, the possibility for C1 ∩C2 �= ∅ cannot be introduced, unless this was
understood to be possible already when C1 and C2 were introduced.

Since multiple inheritance is an exception rather than the rule, the default
assumption will be that explicitly introduced classes are disjoint, as was also
assumed in the earlier chapters of this book.

7.2.4 Actions for a Subclass

A participant c in an action A is always specified to belong to some class C

in the class system. We then say that action A is available for class C. The
local variables of participant c that can be accessed in A are those that are
local to class C. All other local variables of participant c stay unchanged in A
independently of whether c is known to belong to some subclass of C or not.

Let D be a subclass introduced in a superposition step where a specification
layer S is refined into T, and let A(c : C . . . ) be an action that is available
in layer S for the base class C of D. If action A is not replaced by explicit
refinements in layer T, objects in D can also take the role c in the default
refinement of A, since D ⊆ C. We therefore say that objects in subclass D

inherit action A, or the capability to participate in action A.
If an action is replaced by explicit refinements in a superposition step,

such a refinement may also constrain the (sub)classes of the participants. For
instance, a refinement of the form

B(d : D . . . ) : S.A(d . . . )

∧ · · ·

could be given for the above action A(c : C . . . ), in which case the class-specific
local variables of participant d ∈ D could also be accessed and modified in
the refined action B.

An alternative way to refine action A(c : C . . . ) is to specialize it for a given
subclass of C, with the idea that the original action A then remains available for
other subclasses of C. Although this is analogous to specialization of single-
object methods in object-oriented programming languages, the situation is
complicated by the possibility of specializing multi-object actions for multiple
participant roles.

For simplicity, specializations for subclass D will be allowed in the action
language only in the same superposition step where subclass D itself is in-
troduced. Below, we explain some conventions that seem natural and will be
followed in the rest of this book.
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Specialization for a Single Role

Action A(c : C . . . ) can be specialized in layer T for subclass D, D ⊆ C, by
giving for it one or more specializations of the form

B(d : D . . . ) : S.A(∗d . . . )

∧ · · · .

The subclass for which a specialization is valid is that of the participant
marked with an asterisk (∗) in the applied occurrence of the inherited action
A.

Syntactically this differs from the corresponding ordinary action refine-
ment

B(d : D . . . ) : S.A(d . . . )

∧ · · ·
only by the marking of the role for which the specialization is introduced.
The semantic difference is that, in specialization, the original action A is kept
available for the complement subclass C \ D, as illustrated in Fig. 7.3.

� A

A

B

�

� �
�

S

T

Fig. 7.3. Illustration of explicit (B) and implicit (A) action specializations

Several specializations of an action can also be given, for the same or for
different subclasses. If an action A(c : C . . . ) has been specialized separately
for subclasses D1, . . . , Dk, Di ⊆ C, in role c, then the original action A is kept
available for all other objects in C except those in D1 ∪ · · · ∪Dk. This means
that a default specialization is implicitly assumed, which corresponds to the
refinement

A(c : C \ (D1 ∪ · · · ∪ Dk) . . . ) : S.A(c . . . ) ,
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with fairness markings taken as such from A. As a result, action S.A has
then been split in layer T into its explicitly specialized variants for c ∈ Di,
i = 1, . . . , k, and the implicit default variant for c ∈ C \ (D1 ∪ · · · ∪ Dk).

General Case

An action with several participants can be specialized for several participants
at the same time. For instance, if D1 ⊆ C1 and D2 ⊆ C2, then action A(c1 :
C1; c2 : C2) could be specialized for two participants by

B(d1 : D1; d2 : D2) : S.A(∗d1, ∗d2)

∧ · · · ,

which would give an implicit specialization that corresponds to refinement

A(c1 : C1 \ D1; c2 : C2 \ D2) : S.A(c1, c2) .

In general, if there are specializations for different combinations of roles
and subclasses, it is a reasonable convention to assume only one implicit spe-
cialization, where for each participant role all those subclasses have been sub-
tracted for which specializations have been given.

Action concatenation can also be used in connection with specialization,
with the precautions that are also otherwise associated with it, as discussed
in Sect. 6.4.5 (p. 188). For instance, if D1 ⊆ C1 and D2 ⊆ C2, and A1(c : C1)
and A2(c : C2) are two actions in layer S, then the simple concatenation

B(d1 : D1; d2 : D2) : (S.A1(∗d1); S.A2(∗d2))

∧ · · ·

would yield two implicit specializations that correspond to refinements

A1(c : C1 \ D1) : S.A1(c) ,

A2(c : C2 \ D2) : S.A2(c) .

7.2.5 Composition in the Presence of Subclasses

As a default, classes that are introduced in independent refinement paths will
be considered to be disjoint. For instance, if two refinement paths of a common
predecessor layer would lead to the two class systems shown in Fig. 7.4, then
the default class system for the composition would be the one shown in Fig. 7.1
(p. 222).

In composition it is reasonable, however, to allow also the possibility that
the classes defined in independent refinement paths are not disjoint, which
would make their multiple inheritance possible. For instance, in the above
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Fig. 7.4. Classes in two refinement paths of a common predecessor layer

situation a composition could also be defined to yield the class system of
Fig. 7.2 (p. 222).

Actions for a composed system can be given as described in Sect. 6.2
(p. 172). For simplicity, we omit examining here what could be considered as
reasonable conventions for implicit action specializations, when specializations
are introduced in composition.

As an example of composition in the presence of subclasses, let C be a
class with action A(c : C) in layer S, and let D1 and D2 be two subclasses of C

defined in independently refined layers T1 and T2, respectively. Furthermore,
let

B1(c : D1) : S.A(∗c)
∧ · · ·

and

B2(c : D2) : S.A(∗c)
∧ · · ·

be explicit specializations of S.A introduced in T1 and T2, respectively (see
illustration in Fig. 7.5). When layers T1 and T2 are composed, it is important
to know whether classes D1 and D2 are assumed to be disjoint or not. If
not, intersection D1 ∩D2 provides a possibility for their multiple inheritance.
Four different subclasses of C then arise in composition, and different action
synchronizations are available for each, as shown in Fig. 7.5.

7.2.6 Subclasses and Preservation of Properties

From the viewpoint of logic, subclasses introduce only language conventions.
In superposition they affect the conventions for extending the set of available
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Fig. 7.5. Illustration of subclasses and multiple inheritance in composition

variables and for refining actions. Composition also remains as superposition
on the layers that are composed. Therefore, all safety properties of predecessor
layers are also preserved in the presence of subclasses.

As for liveness properties, similar proof obligations are obtained as those
discussed in Sect. 6.1.7 (p. 169). Separate proofs may, however, be required
for all new subclasses. For instance, if B(SFd : D) is the only specialization of
action A(SFc : C) for subclass D, D ⊆ C, and the enabling conditions for their
stutter-excluding parts are g+

B(d) and g+
A(c), respectively, then the following

class-specific proof obligation is obtained for D:

∀d ∈ D : (��g+
A(d) ⇒ ��g+

B(d)) .
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Since the possibility for multiple inheritance introduces intersection sub-
classes even when these are not explicitly used, it leads to proof obligations
that would not appear in its absence.

For each class C, a specification determines the TLA properties E(c) that
are satisfied by objects c ∈ C. If D is a subclass of C, D ⊆ C, preservation
of logical properties implies that properties E(d) are then also satisfied by
all objects d ∈ D. This gives a precise formal meaning for the ‘is-a’ relation
between subclasses and their superclasses.

This interpretation of the ‘is-a’ relation is intuitively natural for specifica-
tions, since reasoning on logical properties is then important. It is, however, an
essentially stronger interpretation than any of those that have been proposed
in more traditional literature on object-oriented modeling, where the mecha-
nisms of object orientation receive more attention than the formal properties
that can be achieved by them, and at least liveness properties are usually
ignored.

Review Questions

Question 7.2.1 Why is it reasonable to consider the class system to be closed
under set-theoretic operations?

Question 7.2.2 Why is it necessary to know about the possibility for multi-
ple inheritance of two classes even when this possibility has not been explicitly
utilized?

Question 7.2.3 What is the meaning of the ‘is-a’ relation between a subclass
and its superclass(es) in this approach?

Exercises

Exercise 7.2.1 Give an example of composition, where the unification con-
dition for synchronized action instances equates participants in different sub-
classes of the same superclass. (For the condition to be satisfied, the equated
participant in question must then, of course, be defined to belong to the in-
tersection class.)

7.3 Example: Doctors’ Office

As an example of explicit subclasses we consider the modeling of a world
where people go to a doctors’ office when they get ill, receptionists organize
patients to meet doctors, and the doctors then cure the patients, who finally
settle their bills with the receptionists.

In practice, in designing such a system one would probably pay more
attention to queuing and waiting aspects than to logical properties. Here we



230 7 Object Orientation Elaborated

ignore, however, real time and efficiency, and use the example to illustrate
the notions of modularity and specialization introduced so far. There are also
some lessons to be learnt about the design methodology that these notions
are intended to support.

7.3.1 First Layer: Illness

We do not start the design by analyzing what kinds of objects the final system
would involve, what kinds of relationships there would exist between them,
and what kind of information should be contained in their local states. In-
stead, we try to find the simplest possible focus for a meaningful projection
of the intended world. Since variables have no significance in isolation from
the actions that affect them, even the first approximation of the world to be
modeled must contain both.

In principle, there are several possibilities for where to start. Perhaps the
most natural candidate for the first focus is the ‘illness bit’ in the potential
patients, together with the events of getting ill and well.

Focusing on this single aspect we design the first layer Illness to contain
patient objects p ∈ Pat with the structure

class Pat = {state Well∗, Ill}

and actions

Get ill(p : Pat) : p.Well→ p.Ill ′ ,

Get well(WFp : Pat) : p.Ill→ p.Well ′ .

In its simplicity this model is straightforward, but it allows us to get
started. In the initial state we assume all patients to be well, and the fairness
assumption in Get well ensures that every patient that gets ill will eventually
also get well:

p.Ill � p.Well . (7.1)

7.3.2 An Independent Initial Layer: Work

Having written down the most important requirement that all ill patients do
get well, we have to decide how this will take place.

From the very beginning we do know that we will need doctors and re-
ceptionists for this purpose. The next logical question might be to ask what
the most essential behavioral properties are for these people. From their view-
point, involvement in the doctors’ office may primarily look like going to work
and returning home after work.
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This leads to another view that is independent of the previous layer, and
where doctors and receptionists are both seen as employees (class Emp). This
layer, called Work, is also quite primitive and almost isomorphic to the previous
one, containing the following definitions:

class Emp = {state Off∗, On} ,

Go to work(WFe : Emp) : e.Off→ e.On ′ ,

Go home(e : Emp) : e.On→ e.Off ′ .

All employees are assumed to be initially in state Off, i.e., off from
work, but eventually they will all go to work by the fairness requirement
on Go to work. For simplicity, we have minimized the liveness properties to
be preserved in the development, by not requiring similar fairness for actions
Go home.

7.3.3 Combining the Two Views

Next we want to compose the two simple views by importing them both to
a new layer People. In this layer people may get ill and then get well, and
some people are employees that go to work and from work to home. Multiple
inheritance of the two classes is permitted to allow employees to be patients
also. The resulting leaf subclasses are illustrated in Fig. 7.6.
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Fig. 7.6. Illustration of state transitions in patient and employee objects

The newly arising subclass Emp∩Pat raises the question of whether some
dependences are required between the two views of the employees that are
patients also. In particular, problems might be foreseen in allowing someone
to appear both as a working doctor and as an ill patient at the same time.
Therefore, we wish to maintain the invariant that nobody is working when ill:

e ∈ Emp ∩ Pat : �(e.Ill ⇒ e.Off) .
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Having formulated this invariance, we can avoid its violations by special-
izing actions Work.Go to work and Illness.Get ill (i.e., their synchroniza-
tions with a stuttering action) as follows:

P go to work(SFe : Emp ∩ Pat) : Illness.Stutter

∧ Work.Go to work(∗e)

∧ e.Well ,

E get ill(p : Emp ∩ Pat) : Illness.Get ill(∗p)

∧ Work.Stutter

∧ p.Off .

This obviously prevents employees from going to work when they are ill, and
from getting ill when they are at work. The use of specialization for subclass
Emp∩ Pat (indicated by asterisks in the applied occurrences of the inherited
actions) keeps the nonrefined versions of these two synchronizations available
for the complement subclasses Emp \ Pat and Pat \ Emp, respectively.

Actions Get well and Go home are taken into the composition ‘as such’,
i.e., as default synchronizations with stuttering actions.

Also, non-stuttering pairs of actions could be synchronized in the com-
position, both for the case when the patient and the employee are different
objects and for the case when they are the same. Since there is no need for
this, no such synchronizations are introduced.

It is easy to check that the liveness properties of both imported layers
have been preserved in this construction. Notice, however, that a weak fairness
marking in P go to work would not have been sufficient for this, since getting
ill could repeatedly disable this action for an employee.

7.3.4 Next Layer: Doctors

For the next refinement step (layer Doctors) we extend the view of how
patients get well, and require that a doctor must participate in that action.

For the purposes of this modeling exercise, doctors (class Doc) are a special
case of employees. When at work, they are assumed to be either idle or busy
healing some patient. To reflect this, we define doctors as employees with two
additional states, and introduce a relation Curing to indicate that a doctor
is currently taking care of a given patient:

class Doc = Emp + {state Idle∗, Busy} ,

relation (0..1)·Curing·(0..1) : Doc × Pat (∅) .

Since employees may or may not be patients, we can now have two kinds of
doctors also, as illustrated in Fig. 7.7.

In addition to the intended invariants introduced by the relation Curing,
the following further invariants (for d ∈ Doc, p ∈ Pat) describe the intended
meaning of the new state variables:
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Fig. 7.7. Illustration of doctors

�(d.Off ⇒ d.Idle) ,

�(d·Curing·p ⇒ d.Busy ∧ p.Ill) ,

�(d.Busy ⇒ ∃p : d·Curing·p) .

Initially these conditions are satisfied if all doctors are Idle and Curing is
empty.

Starting the treatment of a patient by a doctor is modeled by a new action
Start curing that establishes the association Curing between a doctor and
a patient. The treatment ends by a refinement of Get well, which removes
this association:

Start curing(d : Doc; SFp : Pat) : People.Stutter

∧ ¬∃d ∈ Doc : d·Curing·p
∧ d.On

∧ d.Idle

∧ p.Ill→ d.Busy ′

∧ d·Curing ′ ·p ,

Get well(WFp : Pat; d : Doc) : People.Get well(p)

∧ d·Curing·p→ d.Idle ′

∧ ¬d·Curing ′ ·p .

The intended invariants given above also require that a doctor cannot go
home in the middle of treating a patient, which is achieved by specializing
action Go home for doctors as follows:
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D go home(d : Doc) : People.Go home(∗d)

∧ d.Idle .

Other actions of the imported layer are taken into Doctors as their default
refinements.

The required liveness property (7.1) on p. 230 is no longer valid, however,
without some further assumptions about the system. Even when the set of
doctors is non-empty, there is the possibility that all doctors get ill, in which
case nobody can get healed.

To avoid this problem we make the simple assumption that there are doc-
tors who never get ill,

Doc \ Pat �= ∅ ,

which is sufficient to guarantee that the liveness property (7.1) is preserved.

7.3.5 Final Layer: Receptionists

In the final refinement step we introduce receptionists to the system. The
layered structure of the resulting specification is shown in Fig. 7.8, where the
final layer is called Office.

Illness Work

People

Doctors

Office

Fig. 7.8. Specification layers in the example

Receptionists (class Rec) are introduced as employees who have the task to
organize waiting patients to meet doctors. As a subclass of Emp \ Doc, class
Rec may overlap with both Pat and Emp\Pat, as shown in Fig. 7.9. The leaf
class Rec ∩ Pat then inherits from both Emp and Pat. As with doctors, we
assume that there are receptionists who are not patients, i.e.,

Rec \ Pat �= ∅ .

Each patient is assumed to register at one of the receptionists, who also
keeps a list of those idle doctors to whom she can send patients. Assuming



7.3 Example: Doctors’ Office 235

� � �

� � �

�
� �

� � �

Fig. 7.9. Final class system

that each waiting patient and each idle doctor can be the responsibility of
at most one receptionist, the two associations can be introduced by partial
functions

relation (∗)·Waiting at·(0..1) : Pat × Rec (∅) ,

relation (∗)·Idle at·(0..1) : Doc × Rec (∅) ,

with the following intended invariants (in addition to those introduced by the
partial functions themselves):

�(p·Waiting at·r ⇒ p.Ill ∧ r.On ∧ ¬∃d : d·Curing·p) ,

�(d·Idle at·r ⇒ d.On ∧ d.Idle ∧ r.On) .

In order to meet each other, a patient and a doctor have to get registered
at the same receptionist, and this receptionist then also becomes another
participant in action Start curing:

Register patient(SFp : Pat; r : Rec) : Doctors.Stutter

∧ p.Ill

∧ ¬∃d : d·Curing·p
∧ ¬∃r : p·Waiting at·r
∧ r.On→ p·Waiting at ′ ·r ,

Register doctor(d : Doc; SFr : Rec) : Doctors.Stutter

∧ d.On

∧ d.Idle

∧ ¬∃r : d·Idle at·r
∧ r.On→ d·Idle at ′ ·r ,
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Start curing(d : Doc; SFp : Pat; r : Rec) : Doctors.Start curing(d, p)

∧ p·Waiting at·r
∧ d·Idle at·r→ ¬p·Waiting at ′ ·r
∧ ¬d·Idle at ′ ·r .

To model that a patient also has to pay his bill, state p.Well needs to be
partitioned into two substates, Paying and Released, the latter being the
initial state:

class Pat = {. . . } where Well = {state Released∗, Paying} .

Notice that this extension also applies to all subclasses of patients.
In the Get well action, a patient now needs to enter substate Paying,

and a separate action with a receptionist is required to release him from the
office. This would, however, introduce problems for patients that get ill again
before being released. Therefore, we make such events impossible by refining
those actions where a patient gets ill. As a result, we arrive at the following
actions:

Get well(WFp : Pat; d : Doc) : Doctors.Get well(p, d)→ p.Well.Paying ′ ,

Release(SFp : Pat; r : Rec) : Doctors.Stutter

∧ p.Well.Paying

∧ r.On→ p.Well.Released ′ ,

Get ill(p : Pat \ Emp) : Doctors.Get ill(p)

∧ p.Well.Released ,

E get ill(p : Emp ∩ Pat) : Doctors.E get ill(p)

∧ p.Well.Released .

Finally, we need some policy to restrict when receptionists and doctors can
go home when there are waiting patients. The following reflects the decisions
that a receptionist with waiting patients is not allowed to go home, and a
doctor cannot go home when registered at a receptionist:

D go home(d : Doc) : Doctors.D go home(d)

∧ ¬∃r : d·Idle at·r ,

R go home(r : Rec) : Doctors.Go home(∗r)
∧ ¬∃p : p·Waiting at·r→ ∀d : ¬d·Idle at ′ ·r .
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Since R go home is a specialization for receptionists, the default specialization
of Go home is implicitly kept available for the complement subclass, which is
(Emp \ Doc) \ Rec.

The remaining actions of layer Doctors are taken as their default refine-
ments. Inspection of liveness properties, and of possible unwanted situations,
is left to the reader (Exercises 7.3.3–7.3.5).

Exercises

Exercise 7.3.1 List all actions of the final layer Office.

Exercise 7.3.2 Check that the intended safety properties are satisfied by
each layer of this specification.

Exercise 7.3.3 Check that each step also preserves all liveness properties,
implying that the main requirement (7.1) on p. 230 is also satisfied by the
final layer Office.

Exercise 7.3.4 Modify the design so that each employee will always even-
tually go home from work.

Exercise 7.3.5 Discuss further aspects that you would like to change in the
model, and consider whether these changes would affect any of its crucial
properties.

7.4 Composite Objects and Subobject Classes

Aggregation is a facility to form composite objects or aggregates that contain
one or more subobjects as their components.

Although aggregation adds nothing to the expressive power of a specifica-
tion language, it is an intuitively natural concept for expressing certain kinds
of relations between objects. It affects the class system in two ways that will
be discussed below: aggregate objects belong to aggregate classes, and their
subobjects introduce implicit subobject classes.

7.4.1 Aggregate Classes

Consider the situation illustrated on the left-hand side of Fig. 7.10: for each
object d ∈ D there is a unique object c ∈ C, such that a permanent relation
s exists between them. If it is intuitively natural to interpret relation s as a
‘part of’ or ‘has-a’ relation, we may wish to illustrate the situation by drawing
c inside d, as illustrated on the right-hand side of the figure. Object d is then
understood to be an aggregate or composite object, which has a component or



238 7 Object Orientation Elaborated

� ∈ �

� � �

� ∈ �

�
�

�

� � �

∈ �

� ∈ �

� � �

Fig. 7.10. A permanent relation between objects (left), and its representation as a
subobject relation (right)

subobject c. Instead of using the functional notation s(d) for c, we denote it
as d.s.

Each composite object belongs to an aggregate class. The class definition
for the aggregate class D in Fig. 7.10 could be given in the form

class D = {. . . s : C} ,

where s is an identifier for component selection, and C is the class of the
component object. Since a subobject in class C gives rise to a corresponding
subclass of C (to be discussed below), class C is required to be an imported
class.

Besides one or more components, the definition of an aggregate class D

may also introduce class-specific local variables and finite-state structures for
D, similarly to other class definitions. In addition to introducing subobjects
individually, collections of subobjects could also be easily introduced as com-
ponents. Such facilities will not, however, be utilized in the following.

7.4.2 Identity of Aggregates and Subobjects

Since subobject relations are just a special form of relations between objects,
an aggregate object and its subobjects all have different identities as objects.
As reflected in graphical illustrations, shared subobjects will not be allowed.
The converse of selecting a component s, denoted by s−1, is therefore unique.
If c = d.s, we write d = c.s−1. We then have d.s.s−1 = d and c.s−1.s = c.

When an aggregate object participates in an action, its components are
often also needed in it. Similarly, an action for a component object may need
the whole aggregate to which it belongs. Instead of writing all these objects
explicitly as participants and giving the associated subobject relations in the
guard, we simplify notation by giving only one of them as a participant, and
referring to the others by component selectors. To avoid problems of aliasing,
we will therefore not allow an object and its subobject, or several subobjects
of the same aggregate, to participate in the same action as different explicit
participants.3

3The arising of such situations should also be avoided in connection with implicit
specialization of actions.
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7.4.3 Subobject Classes

In object-oriented programming languages, a method of a composite object
may invoke the methods of its subobjects. In the action-oriented execution
model invocation of methods has been replaced by action refinement. It is
therefore natural that aggregate classes may have actions that refine actions
for their subobjects.

Considering the example of Fig. 7.10, to specialize an action A(c : C) for
the situation where c is a subobject d.s in an aggregate d ∈ D, a specific
subclass of C is needed for such subobjects. Therefore, the subobject selector
s is assumed to introduce another subclass, denoted by D.s, which is a subclass
of C, i.e., D.s ⊆ C. Subclasses introduced implicitly in this way will be called
subobject classes.

If an ordinary relation s were used instead of a subobject relation (see the
left-hand side of Fig. 7.10), the same effect would require two refinements of
action A(c : C) for explicit participants c ∈ C and d ∈ D, one for the case
where d·s·c, and the other for the case ¬d·s·c.

A subobject class D.s is a simple special case of subclasses in the sense that
it does not have any class-specific variables. The need for them is removed by
the possibility for class-specific variables in the associated aggregate class D.

7.4.4 Subobject Relations

The relationship between an aggregate object and its subobject is a specific
subobject relation, often called a ‘has-a’ relation. In contrast to subobject
relations, explicitly introduced relations will be called associations.

In order to be useful for modeling purposes, subobject relations need to
possess some inherent constraints in comparison to general associations. Al-
though it can be debated which constraints would most truthfully reflect the
intuitive notion of aggregation, it is important to make decisions that leave
no mathematical ambiguity. The main criterion for useful constraints is that
they are helpful for reasoning.

The following general assumptions will be made in this book:

• Subobject relations are constant relations that cannot be modified by ac-
tions.

• A subobject may itself be an aggregate, and an aggregate may itself be a
subobject of another aggregate, but no infinite chains are allowed in either
direction.

• No object can be an immediate subobject of more than one aggregate.

In particular, these constraints imply that subobject relations are constant
bijections between aggregate classes and subobject classes.

The first of the above constraints captures the intuition that subobject
relations are used only to express permanent structures in an instantiation of
a specification. Since the classes to which an object belongs cannot be changed
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in actions, this assumption was, in fact, already utilized in the above discussion
of subobject classes and action specialization for component objects.

On intuitive grounds one might argue for removing this constraint. As
far as reasoning is concerned, removing this constraint would, however, also
remove the advantages that subobject relations have as a special case of as-
sociations.

The second constraint simply excludes infinite structures, including those
that would result from circularity, like defining an aggregate class with a
component in this aggregate class itself. Together with the first constraint it
even excludes structures that would be potentially infinite, like binary trees
where the structure could grow and shrink as needed.

The third constraint, which was also already assumed above, is perhaps
the most debatable. Notice, however, that sharing of subobjects would re-
quire multiple inheritance from all associated subobject classes. Therefore,
disallowing this possibility simplifies the situation as far as proof obligations
for liveness properties are concerned.

7.4.5 Example: Putting Buffers Together

Let class B1 model a single-element buffer, defined in specification layer S as
follows:

class B1 = {y : Z; empty : B (true)} ,

Put1(b : B1; x : Z) : b.empty→ b.empty ′ = false

∧ b.y ′ = x ,

Get1(b : B1; x : Z) : ¬b.empty

∧ x = b.y→ b.empty ′ = true .

The Boolean variable empty, initialized as true, is intended to indicate
whether a buffer is empty or full.

Two-element buffers can now be constructed in a subsequent specification
layer as aggregates that consist of two one-element buffers (see Fig. 7.11),

class B2 = {b1, b2 : B1} .

This introduces implicitly two subclasses of B1, namely B2.b1 and B2.b2, for
which the actions for B1 can be specialized as follows:

Put2(c : B2; x : Z) : S.Put1(∗c.b1, x) ,

Transfer(WFc : B2; x : Z) : S.Get1(∗c.b1, x) &

S.Put1(∗c.b2, x) ,
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Fig. 7.11. Two-element buffer as an aggregate of two one-element buffers

Get2(c : B2; x : Z) : S.Get1(∗c.b2, x) .

Of these, action Put2 specializes Put1 for subclass B2.b1, putting a data
value to the first component c.b1 of c ∈ B2. Action Transfer is a combined
action (see Sect. 6.4.5, p. 188) that specializes action Get1 for subclass B2.b1

and action Put1 for subclass B2.b2. The fairness requirement on it guarantees
that a data value cannot remain indefinitely in the first component when the
second component is empty. Finally, action Get2 gets a data value from the
second component as a specialization of Get1 for subclass B2.b2.

7.4.6 Data Refinement by Aggregation

Given an abstract specification of a class, data refinement (see Sect. 6.4.2,
p. 186) can be used in deriving more concrete ‘implementations’ of it. The
class is then extended with new variables that are needed for the implemen-
tation, and some of the original variables are turned into non-primitive state
functions, which can be omitted as state variables.

Aggregation is often useful in the class extensions that are used in such
constructions. As an example we consider another derivation of two-element
buffers.

Abstract Specification of Two-element Buffers

Let length(x), first(x), rest(x), and ‘◦’ denote the length of list x, its first
element, the rest of the list, and list concatenation, respectively. An abstract
specification of class B2b, which corresponds to B2 given above, could now be
given directly as

class B2b = {q : list U (〈〉)} ,

where q is a list, initialized as an empty list, representing the contents of the
buffer, with an intended invariant 0 ≤ length(q) ≤ 2, and with actions

Put(b : B2b; x : Z) : length(b.q) < 2→ b.q ′ = b.q ◦ 〈x〉 ,

Get(b : B2b; x : Z) : length(b.q) > 0

∧ x = first(b.q)→ b.q ′ = rest(b.q) .
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Fig. 7.12. Implementation of an abstract two-element buffer

Implementation as an Aggregate

Suppose that buffer classes B1 and B2b have been defined in layers S and T,
respectively. When these layers are composed, class B2b can be extended with
two single-element buffers, yielding

class B2b = {. . . b1, b2 : B1}

as illustrated in Fig. 7.12, with the intended invariant that b.q for b ∈ B2b

always consists of the elements in the two single-element buffers b.b1 and
b.b2,

�(b.q =(if b.b2.empty then 〈〉 else 〈b.b2.y〉) ◦
(if b.b1.empty then 〈〉 else 〈b.b1.y〉)) .

This would allow us to take b.q as a non-primitive state function, indicated
by enclosing it in braces in Fig. 7.12.

Actions

Put2(b : B2b; x : Z) : T.Put(b, x)

∧ S.Put1(∗b.b1, x) ,

Transfer(WFb : B2b; x : Z) : T.Stutter

∧ S.Get1(∗b.b1, x) &

S.Put1(∗b.b2, x) ,

Get2(b : B2b; x : Z) : T.Get(b, x)

∧ S.Get1(∗b.b2, x)

now preserve the invariant, and therefore allow us to omit b.q from an imple-
mentation.

Class B2b now has the same structure as the directly constructed B2, but
its derivation guarantees that it satisfies the properties given to it at the more
abstract level T. In Chap. 8 we will analyze the conditions that have to be
satisfied in order that B2b be applicable in all contexts where the original B2

is applicable.
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Review Questions

Question 7.4.1 When a composite object participates in an action, do its
subobjects also have roles in it?

Question 7.4.2 What are the conditions that a subobject relation is as-
sumed to satisfy?

Question 7.4.3 What is a natural criterion in judging whether a given form
of aggregation is a useful facility in modeling, even though it can always be
replaced by ordinary association relations between objects?

Question 7.4.4 Why is it natural in this approach that subobjects introduce
subclasses?

Exercises

Exercise 7.4.1 Give examples of situations where constant bijections be-
tween two classes do not satisfy the constraints given for subobject relations.

Exercise 7.4.2 Consider the consequences that removing the different con-
straints for subobject relations would have.

Exercise 7.4.3 Instead of using aggregation, consider the two-element buffer
example of Sect. 7.4.5 (p. 240) in terms of association relations. Write down the
essential assumptions on these relations, and rewrite actions Put2, Transfer,
and Get2 as needed.

7.5 Aggregation vs. Inheritance vs. Copying

The intuitions behind aggregation and explicit subclasses are different. As
technical facilities they are, however, often interchangeable. A third mecha-
nism that can serve similar purposes is copying (see Sect. 6.2.4, p. 178), which
we restrict, however, to entire layered specifications.

To understand these facilities better, the limits of their technical inter-
changeability are analyzed in this section. The possibilities offered by the
combined use of aggregation and inheritance will also be presented.

7.5.1 Similarity of Aggregation and Inheritance

At an intuitive level, aggregation and explicit subclasses are suitable for mod-
eling ‘has-a’ and ‘is-a’ relations, respectively. Their distinction is, however,
rather subtle, and the choice between them often reflects a selection of view-
point rather than inherent characteristics of the problem.
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For instance, it may seem natural to consider Man and Woman to be
subclasses of Person, since the associated relationships are intuitively un-
derstood as ‘is-a’ relations. One could, however, also defend the somewhat
counterintuitive view that there is an asexual Person component within each
Man and Woman object, and one may not find any logical contradictions
in modeling the world in this way. As for the class system, this choice would
also lead to two subclasses of Person, to those that are components in Man,
and to those that are components in Woman.
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Fig. 7.13. Illustration of the similarity between aggregation and inheritance

Technically, both modeling possibilities lead to the same sets of local vari-
ables in the classes, and to similar specializations of actions that have been
defined for Person. To see this in more detail, let the class-specific variables of
Person be denoted by x, and those that are specific to Man by y. Figure 7.13
then illustrates the situation where Man1 is an aggregate class that gives rise
to subobject class Man1.p, whereas Man2 is an explicitly defined subclass
of Person. To emphasize the similarity, inherited local variables x have been
given in the figure in a dashed box within Man2.

As for actions, any action A for Person can be specialized in both cases
so that their effects are identical. In the situation illustrated in Fig. 7.13 such
specializations could be written as

B1(m : Man1) : A(∗m.p)

. . . ,

B2(m : Man2) : A(∗m)

. . . ,

and attributes x could be accessed in them as m.p.x and m.x, respectively.

7.5.2 Non-equivalence of Aggregation and Inheritance

In the above situation, aggregation and explicit subclasses exhibit no essen-
tial differences. The situation remains the same when aggregation of multiple
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Fig. 7.14. Two subobjects of the same class is possible (left), whereas two sets of
inherited variables is not (right)

components (belonging to disjoint classes) is compared to an explicit subclass
with multiple base classes.

There are, however, situations where the equivalence of the two facilities
breaks down:

• Several subobjects of the same class can be introduced in aggregation,
whereas an object of a subclass is always just one object of its base class(es)
(see Fig. 7.14).

• When two components of an aggregate belong to different subclasses of a
common superclass, the local variables of this superclass appear separately
in each subobject. In contrast, in multiple inheritance of such subclasses
the local variables of the common superclass are inherited only once (see
Fig. 7.15).

• Combined use of aggregation and explicit subclasses allows the definition
of recursive structures in a manner that is not possible with either facility
alone.

The first situation, illustrated in Fig. 7.14, is one where aggregation is
more powerful than explicit subclasses.

The second situation is illustrated in Fig. 7.15, where D1 is an aggregate
class containing components in C1 and C2, whereas D2 is an explicit subclass
that inherits them both. If one were to try to use aggregation to achieve the
effects of D2, then the two subobjects d.s1 and d.s2 of an object d ∈ D1

would need to have a common subobject with variable x. That is, one would
need to relax the requirement that a subobject can be an immediate subobject
in at most one aggregate. This shows that explicit subclasses with multiple
inheritance provide restricted means to overcome this intended limitation of
aggregation, without resorting to the full generality of associations.

The third situation of recursive structures will be discussed separately
below, starting in Sect. 7.5.7.
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Fig. 7.15. Each subobject has separate local variables (left), whereas all inherited
variables are included only once (right)

7.5.3 Copying and the ‘Uses’ Relation

As mentioned in Sect. 6.2.4 (p. 178), it is sometimes useful to utilize copies of
a specification layer, with different names for their global variables, classes,
and relations. Although copying could be defined in several ways, we restrict
it to ‘deep copying’ of specification layers. That is, copying is applied to en-
tire layered specifications only, and there is no sharing between the original
specification and its copies.

Let S be a specification layer with copies Si, i = 1, . . . . When a copy,
say S1, is imported to layer T, we can say that relation ‘uses’ is established
between T and S; specification T is not a refinement of S, but it makes use of
it. There is an analogy to aggregation in the sense that specification T may at
the same time use several independent copies Si.

Copying can also be used with effects that are similar to subclassing. To see
this, consider the simple situation illustrated in the left-hand part of Fig. 7.16,
where layer S with no global variables specifies a single class C with action
A. Layer S is then imported to T, which introduces a subclass C1 of C with a
specialization B of action A.

Effectively the same is done in the right-hand part of Fig. 7.16 by importing
to T both layer S and a copy S1 of it, where class C is called C1. Class C1

is then extended and the associated action A1 is refined similarly to how the
corresponding subclass and specialized action were formed on the left.

The main difference between the two constructions is that, in the right-
hand part, classes C1 and C are disjoint, corresponding to classes C1 and
C \ C1 in the left-hand part, respectively. Intuitively, an ‘is-a’ relation holds
between C1 and C in the left-hand part, whereas in the right-hand part one
can say that class C1 uses C (as defined in layer S), i.e., a ‘uses’ relation holds
between them. As a consequence of this difference, any subsequent additions
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Fig. 7.16. Similar effects achieved by a subclass (left) and by copying (right)

to class C will also affect C1 in the construction on the left, but not in the
one on the right.

7.5.4 Simple Use of Multiple Inheritance

In discussing object-oriented design methods it has often been debated
whether multiple inheritance offers any real advantages, and what proper
multiple inheritance does, in fact, mean. In many situations where the use of
multiple inheritance has been suggested, one can indeed argue whether a true
‘is-a’ relationship holds to more than one of the base classes. The relation-
ship to the others might be more natural to express by aggregation, or by an
association that expresses some kind of clientship.

In specification the situation is not, however, the same as in programming,
and examples can easily be provided where multiple inheritance corresponds
intuitively to a multiple ‘is-a’ relationship. Usually this results from providing
several independent views of some objects, and from a subsequent need to
synthesize these views. When multiple inheritance is used for classes without
a common superclass (except for the trivial root class C0), aggregation could
technically be used instead, as was explained above. Multiple ‘is-a’ relationship
may, however, be more truthful to intuition in this case also, as is shown by
multiple inheritance of classes Pat and Emp in the doctors’ office example
discussed in Sect. 7.3.

7.5.5 Multiple Inheritance with a Common Superclass

Multiple inheritance of classes with a common superclass is analogous to com-
bining independent extensions of a class. Together with composition of layers,
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the mechanism of class extension allows us to express independent refinements
independently. Multiple inheritance allows us, in addition, to combine such in-
dependent refinements at will. The situation is then the one illustrated above
in Fig. 7.5 (p. 228).

As an example, let us consider a generic class definition for random-number
generators and two independent subclasses that one might wish to combine
by multiple inheritance.

Example: Generic Random-number Generator

Let class
class G rand = {y : R} ,

defined in layer G, model random-number generators with a local seed variable
y, and let actions for it be

Initialize(r : G rand; x : R) : T→ r.y ′ = x ,

Next(r : G rand; z, x : R) : z = r.y→ r.y ′ = x ,

where Initialize initializes y with a seed number x, and Next gives the
current value of y as output z and updates y with another value x.

Subclass that Determines the Algorithm

A concrete random-number generator could be obtained from G rand in an-
other layer C by determining the function f by which y is updated, and re-
stricting initialization to take place only once:

class C rand = G rand + {initialized : B (false)} ,

C initialize(c : C rand; x : R) : G.Initialize(∗c, x)

∧ ¬c.initialized→ c.initialized ′ = true ,

C next(c : C rand; z : R) : G.Next(∗c, z, f(c.y))

∧ c.initialized .

Subclass that Adds Functionality

Independently of C rand, we could add functionality to G rand, for instance
by keeping a log of all numbers generated, and outputting this log when
requested. This could be achieved in layer L as follows:
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class L rand = G rand + {log : R (〈〉)} ,

L initialize(l : L rand; x : R) : G.Initialize(∗l, x)→ l.log ′ = 〈〉 ,

L next(l : L rand; z, x : R) : G.Next(∗l, z, x)→ l.log ′ = l.log ◦ 〈z〉 ,

Output log(l : L rand; u : R) : G.Stutter

∧ u = l.log→ l.log ′ = 〈〉 .

Combination by Multiple Inheritance

The properties of C rand and L rand could now be combined by multiple
inheritance. In particular, the actions for the intersection C rand ∩ L rand

would imply the corresponding actions for both base classes, as shown in the
generic illustration in Fig. 7.5 (p. 228).

7.5.6 Combining Explicit Subclasses and Aggregation

In Sect. 7.4.6 (p. 241) it was shown how class extension can be used to refine
an abstract class specification into an implementation that utilizes a collection
of other objects. The same idea is also applicable so that subclasses are used
instead of class extension, and this provides a systematic approach to deriving
implementations of abstract classes.4

Given an abstract base class C, an implementation of C can be derived
as an aggregate subclass D, D ⊆ C, which contains as subobjects those ob-
jects that will constitute the implementation. The situation is illustrated in
Fig. 7.17, where the braces around the inherited variable x2 in D indicate that
it has been effectively removed by data refinement.

The abstraction mapping between the implementation subclass D and the
abstract class C is provided by invariants that show how (some of) the inher-
ited variables are represented in terms of variables in the subobjects. The pur-
pose of these invariants is to turn these inherited variables into non-primitive
state functions that can be omitted from an implementation. In the situation
of Fig. 7.17 such an invariant for d ∈ D would have the form

�(d.x2 = f(d.s1.y, d.s2.z) .

4In object-oriented programming languages the term ‘abstract class’ has a tech-
nical meaning. Here it just denotes a class whose specification is at a high level of
abstraction. Correspondingly, an ‘implementation’ denotes here a specification that
is at a lower level of abstraction, and is therefore closer to a concrete implementation.
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Fig. 7.17. Implementation of a class as an aggregate

Actions for subclass D must then be either new actions or specializations
of those for C, C1, and C2. Action combination or concatenation may also be
needed, as was shown in the example in Sect. 7.4.6 (p. 241).

7.5.7 Recursive Aggregates

The above idea of implementing an abstract class C as an aggregate class D,
D ⊆ C, can also be utilized in such a way that D contains subobjects that
belong to C. This situation is illustrated in Fig. 7.18, which corresponds to a
class definition of the form

class D = C + {. . . s : C} .

�
� �

�

�

�
�

� � �

�
�

is-a is-a

Fig. 7.18. Recursive implementation of a class

At first sight this might seem to be useless, or to be in conflict with the
general restrictions on subclasses and subobject relations. However, although
some kind of recursion is involved, this does not mean that some class would
be a proper subclass of its own. Also, the constraints given in Sect. 7.4.4
(p. 239) for subobject relations are not violated either, since the situation does
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not imply the existence of infinite subobject chains, or that some subobject
would be an immediate subobject in more than one aggregate object.

What is special in this situation is that two subclasses of C are introduced
at the same time: D ⊆ C and D.s ⊆ C. If these are disjoint, i.e., D∩D.s = ∅,
the situation is similar to what has already been discussed. New possibilities
arise, however, if multiple inheritance of D and D.s is permitted, i.e., D∩D.s �=
∅. For instance, we can then have an object d ∈ D illustrated in Fig. 7.19,
where d.s is in D ∩ D.s and therefore has a further subobject d.s.s, which
then belongs to subclass (D ∩ D.s).s.

� � � � �

� ∈ �

· · ·
� � � ∈ � ∩ � � �

· · ·

Fig. 7.19. Multiple inheritance of a subobject class and an explicit aggregate sub-
class
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Fig. 7.20. Recursive subclasses

For the class system the situation D ∩ D.s �= ∅ means that there is an
infinite sequence of nested subclasses

D1 = D.s , D2 = (D ∩ D.s).s , . . . , Di+1 = (D ∩ Di).s , . . . (7.2)
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as illustrated in Fig. 7.20. Objects d ∈ Di are those that are at least on the
ith level of nested subobjects, and objects d ∈ (Di \ Di+1) \ D are those that
are at level i and have no further subobjects d.s.

Notice that the non-existence of infinite subobject chains requires each ob-
ject d ∈ D to have a maximal depth for which a sub...subobject d.s . . . s exists.
Because of the assumption that subobject relations are constant relations, this
depth must also be constant for each d ∈ D.

Recursive aggregates exhibit situations that cannot be represented in terms
of only aggregation or inheritance. Combined use of these facilities therefore
offers restricted possibilities to overcome their limitations, without resorting
to the full generality of associations. In the following such possibilities will be
analyzed in more detail in the light of a simple example.

7.5.8 Example: Nested Stacks

A simple example of a stack is used to illustrate the idea of recursive aggre-
gates.

Basic Stack

Let C be a class definition for a stack, defined in layer S. A list-valued local
variable u, initialized as empty, is used in C to store the contents of a stack,
with ‘length’, ‘first’, ‘rest’, and ‘◦’ as used before in this book. For simplicity,
an additional redundant variable n will be used to indicate the current length
of u, i.e.,

�(c.n = length(c.u))

is an intended invariant for all c ∈ C.
This leads to class definition

class C = {u : list U (〈〉); n : N (0)}

and actions

Push(c : C; x : U) : T→ c.u ′ = 〈x〉 ◦ c.u

∧ c.n ′ = c.n + 1 ,

Pop(c : C; x : U) : c.n > 0→ x = first(c.u)

∧ c.u ′ = rest(c.u)

∧ c.n ′ = c.n − 1 .

Notice that, since there is no fairness requirement in Push, class C can also
have subclasses with finite capacity. The specialization of action Push would
be disabled for objects of such a subclass, when the stack is full.
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Stack within Stack

Consider an implementation of the stack class C that stores separately the top
element of the stack and uses an internal stack for the rest of it. Although this
does not sound very useful in itself, it offers a basis for a recursive structure
where each level – except the innermost one – stores just one stack element.
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Fig. 7.21. Stack within a stack

Introducing further state variables to indicate whether a push or pop op-
eration is pending for the internal stack, and using an auxiliary variable aux

to store an additional value, we get subclass D ⊆ C,

class D = C + {top, aux : U; state Ready∗, Pushing, Popping; s : C} ,

illustrated in Fig. 7.21, with an intended invariant

�(d.Ready ∧ d.n = d.s.n = 0 ∨

d.Ready ∧ d.u = 〈d.top〉 ◦ d.s.u ∨

d.Pushing ∧ d.u = 〈d.top, d.aux〉 ◦ d.s.u ∨

d.Popping ∧ d.u = d.s.u) (7.3)

for d ∈ D. Obviously, d.n ≥ d.s.n is then also invariantly true and, if d

is Ready and d.n > 0, then d.top contains the first element of the stack,
d.top = first(d.u).

The purpose of invariant (7.3) is to make variable d.u into a non-primitive
state function that need not be present. Since D contains a subobject in C,
and infinite subobject chains are not possible, the construction will not, how-
ever, remove the need for implementing class C either directly or as another
subclass.

Assuming that the two subclasses D and D.s are disjoint, actions Push
and Pop can now be specialized for them as

Push first(d : D; x : U) : S.Push(∗d, x)

∧ d.Ready

∧ d.n = 0→ d.top ′ = x ,
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Push rest(d : D; x : U) : S.Push(∗d, x)

∧ d.Ready

∧ d.n > 0→ d.aux ′ = d.top

∧ d.top ′ = x

∧ d.Pushing ′ ,

Push internal(WFd : D) : S.Push(∗d.s, d.aux)

∧ d.Pushing→ d.Ready ′ ,

Pop last(d : D; x : U) : S.Pop(∗d, x)

∧ d.Ready

∧ d.n = 1

∧ x = d.top ,

Pop rest(d : D; x : U) : S.Pop(∗d, x)

∧ d.Ready

∧ d.n > 1

∧ x = d.top→ d.Popping ′ ,

Pop internal(WFd : D) : S.Pop(∗d.s, x)

∧ d.Popping→ d.top ′ = x

∧ d.Ready ′ ,

and the satisfaction of invariant (7.3) can then be immediately verified.
Since no liveness requirements were given in layer S for class C, the fairness

assumptions given here for subclass D may seem superfluous. However, by
preventing objects d ∈ D from staying permanently in state d.Pushing or
d.Popping, in which external push and pop actions are disabled, the given
fairness assumptions allow the use of subclass D to replace C in connections
where fairness assumptions have also been added to push and pop actions.
This question will be discussed in a more general setting in Chap. 8.

Recursive Stack

Consider now the situation D ∩ D.s �= ∅. There are then objects d that are
subobjects of d.s−1 but also themselves have subobjects d.s, as illustrated
in Fig. 7.22. Since infinite chains of subobjects are not allowed, this nesting
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must, however, end at some point. That is, there is an innermost stack d.s . . . s,
which does not belong to D.

The situation is exceptional in the sense that two levels of subclasses have
then been introduced in the same layer – a situation that we have not allowed
to arise so far. It is now reasonable to consider the specialized actions given
above to be applicable only to subclasses D \ D.s and D.s \ D. Their com-
binations are, however, sufficient to determine the reasonable specializations
for D ∩ D.s also.

To see this, consider push actions for subclass D∩D.s, and let d ∈ D∩D.s

be as illustrated in Fig. 7.22. To be a specialization for subclass D.s, a
push action for d needs to have the characteristics of Push internal(d.s−1),
which implies S.Push(d, d.s−1.aux). On the other hand, to be a specializa-
tion for D, it also needs to have the characteristics of either Push first(d, x)
or Push rest(d, x), both of which imply S.Push(d, x). Unifying the im-
plied instances of action S.Push therefore determines x in both cases as
x = d.s−1.aux. Combining the guards and effects of Push internal(d.s−1)
with those of Push first(d, d.s−1.aux) and Push rest(d, s−1.aux), respec-
tively, then gives us actions

Push nested first(WFd : D ∩ D.s) : S.Push(∗d, d.s−1.aux)

∧ d.s−1.Pushing

∧ d.Ready

∧ d.n = 0→ d.s−1.Ready ′

∧ d.top ′ = d.s−1.aux ,
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Push nested rest(WFd : D ∩ D.s) : S.Push(∗d, d.s−1.aux)

∧ d.s−1.Pushing

∧ d.Ready

∧ d.n > 0→ d.s−1.Ready ′

∧ d.aux ′ = d.top

∧ d.top ′ = d.s−1.aux

∧ d.Pushing ′ ,

where the fairness requirements are needed to satisfy the fairness requirements
associated with subclass D.s.

The corresponding specializations of S.Pop can be derived similarly.

Discussion

As already stated, the above specializations for D ∩ D.s are determined by
those for D and D.s. The following general observations are sufficient to show
that the resulting specializations do not lead to conflicting ‘assignments’ in
this kind of situation:

• Unification ensures that the implied actions for base class C are the same.
• The specializations for D and D.s that are combined update class-specific

variables in different objects of class D.

Multiple inheritance of D and D.s also gives proof obligations for the
liveness properties of the intersection class D ∩ D.s. To be more specific, a
non-empty stack d ∈ D∩D.s should always eventually become Ready. Since
recursive structures are finite, such a proof is basically inductive. For the
innermost pair of subobjects (d.s−1, d) we have d /∈ D, and this property
for d.s−1 depends on the fairness assumption in Push internal, which is the
default specialization of this action for subclass D.s \ D. For non-innermost
pairs (d.s−1, d), where d ∈ D ∩ D.s, this property for d.s−1 depends on the
induction assumption for d and the fairness assumption in Push nested rest.

As for the actual behavior of a recursive stack, each push and pop operation
may give rise to a cascade of internal push and pop actions, and several
such cascades may be proceeding concurrently at different depths. In spite
of this concurrency, the safety properties of the basic stack are satisfied by
construction, and only liveness properties need a proof.

7.5.9 Synchronous Aggregates

Actions for an aggregate and its components were synchronized in the exam-
ple of Sect. 7.4.6 (p. 241). This idea can also be applied in connection with
recursive aggregates.
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Synchronized Stack within Stack

As an example consider a synchronous version of the stack example, where
subclass E ⊆ C is defined as

class E = C + {top : U; s : C} ,

with the following intended invariant for e ∈ E:

�(e.u = e.s.u = 〈〉 ∨ e.u = 〈e.top〉 ◦ e.s.u) .

Obviously, then always either e.n = e.s.n = 0 or e.n = e.s.n + 1 > 0.
Assuming first that E ∩ E.s = ∅, synchronous operation on objects e ∈ E

and e.s ∈ E.s can be expressed in terms of combined actions, and we get the
following specialized actions:

Push sync first(e : E; x : U) : S.Push(∗e, x)

∧ e.n = 0→ e.top ′ = x ,

Push sync rest(e : E; x : U) : S.Push(∗e, x) &

S.Push(∗e.s, e.top)

∧ e.n > 0→ e.top ′ = x ,

Pop sync last(e : E; x : U) : S.Pop(∗e, e.top)

∧ e.n = 1

∧ x = e.top ,

Pop sync rest(e : E; x : U) : S.Pop(∗e, e.top) &

S.Pop(∗e.s,first(e.s.u))

∧ e.n > 1

∧ x = e.top→ e.top ′ = first(e.s.u) .

Synchronized Recursive Stack

Finally, we investigate the consequences of permitting multiple inheritance of
E and E.s in the above synchronous example. Instead of cascaded push and
pop operations, as in the asynchronous case, this leads to operations that
push and pop synchronously through all required stack levels. Since there is
no bound on the number of levels, the number of resulting actions is no longer
finite, although only a finite number of them is applicable to any given object
e ∈ E ∩ E.s.
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Fig. 7.23. Three nested and synchronous stacks

Similarly to the asynchronous case, push and pop actions for E ∩ E.s are
again determined by the actions for the non-recursive situation. As an ex-
ample, let e be as illustrated in Fig. 7.23, where e and e.s belong to class
E, but e.s.s does not, and subclasses have been denoted analogously to the
conventions in (7.2) and Fig. 7.20 (p. 251) as

E1 = E.s , E2 = (E ∩ E.s).s , . . . , Ei+1 = (E ∩ Ei).s , . . . .

Consider now a push action for such an object e in the situation where
e.n ≥ 2. Since the subclass of e.s.s determines uniquely the subclasses of e.s

and e, we formulate it for the participant c = e.s.s. Similarly to the reason-
ing in the case of asynchronous recursive stacks, we conclude that such an
action must have the characteristics of actions Push sync rest(c.s−1.s−1, x),
Push sync rest(c.s−1, y), and S.Push(c, z). Unification of implied instances
of actions now determines parameters y and z as y = c.s−1.s−1.top and
z = c.s−1.top, which leads to a specialized action5

Push sync f2(c : (E2 \ E3) \ E; x : U) : S.Push(∗c.s−1.s−1, x) &

S.Push(∗c.s−1, c.s−1.s−1.top) &

S.Push(∗c, c.s−1.top)

∧ c.s−1.n > 0→ c.s−1.s−1.top ′ = x

∧ c.s−1.top ′ = c.s−1.s−1.top .

Other specialized actions for the different subclasses of E ∩ E.s can be
derived in a similar manner.

Review Questions

Question 7.5.1 In which situations is there no essential technical difference
between aggregation and inheritance?

5Suffix f in the name is intended to indicate that the action operates on a ‘full’
stack, where all levels, except possibly the innermost stack, are already in use, and
subscript � indicates their number.
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Question 7.5.2 In which situations is copying and extending a class an al-
ternative for subclassing?

Question 7.5.3 What is meant by an ‘abstract class’ in this book, and how
can an ‘implementation subclass’ be introduced as an aggregate?

Question 7.5.4 Why does finiteness of recursive structures simplify proofs
of liveness properties?

Exercises

Exercise 7.5.1 Compare multiple inheritance of two different subclasses of
C and extensions of two different copies of C.

Exercise 7.5.2 Show that sequence (7.2) on p. 251 is, indeed, a sequence of
nested subclasses, as illustrated in Fig. 7.20.

Exercise 7.5.3 To which leaf subclasses in Fig. 7.20 (p. 251) do objects d,
d.s, and d.s.s of Fig. 7.19 (p. 251) belong, if d is not a subobject, and d.s.s

is not an aggregate?

Exercise 7.5.4 Check that invariant (7.3) on p. 253 is maintained by the
actions given in Sect. 7.5.8.

Exercise 7.5.5 Derive the specializations of S.Pop for subclass D ∩ D.s in
Sect. 7.5.8.

Exercise 7.5.6 Improve the efficiency of internal stack operations for nested
stacks in Sect. 7.5.8, so that push operations are also accepted in state
Popping, and pop operations are also accepted in state Pushing.

Exercise 7.5.7 Derive all specializations of S.Push and S.Pop that are ap-
plicable to the synchronized stack object illustrated in Fig. 7.23 (p. 258).
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From the very beginning, inheritance has been one of the characteristics of
object orientation, but it has also raised a lot of discussion of its true essence,
proper use, and implementation problems. The need for multiple inheritance
is a specific topic that has been debated. For a discussion of such issues, the
reader is referred to Sakkinen’s critical analysis of inheritance in C++ [178],
and to an extensive survey paper by Taivalsaari [188]. The presentation in
this book has omitted those characteristics of inheritance that do not seem
relevant for the logical specification of systems.

In Wegner’s classification [192], a language is object-based if it supports ob-
jects as a language feature, and object-oriented if its objects belong to classes
and if class hierarchies may be incrementally defined by an inheritance mech-
anism. Although our specification language lacks those programming level
features that are often considered to be characteristic to object orientation, it
clearly satisfies Wegner’s criteria for object orientation.

Complement subclasses and subobject subclasses, as presented here, are
notions that do not appear in object-oriented programming languages. The
former is, however, a necessity for effective use of class hierarchies in the
refinement of specifications, and the latter arises naturally in making a useful
distinction between aggregation and more liberal associations.

In addition to programming and program design, the use of objects is
also currently advocated in methods for the specification and modeling of
software. A commonly used formalism, which is intended to standardize the
associated concepts and graphical formalisms, is the Unified Modeling Lan-
guage (UML) [191]. As for terminology, the definitive guide of UML [90] does
not speak about specialization by subclasses and inheritance. Instead it uses
the term ‘generalization’ to denote the converse of specialization. Also, the
term ‘composition’ is used there for what is called aggregation in this book.
‘Aggregation’, on the other hand, denotes in UML a weaker relation, which
allows a component object to be a component in several aggregates at the
same time. From the viewpoint of adding useful formal properties to those of
general associations, the advantages of this weaker form are, of course, also
weaker.

In UML and other informal approaches, notation and graphical formalisms
are introduced at an intuitive level, where precise semantics is not considered
a major concern. As for attempts to add formal meaning to UML, the reader
is referred to the home page of the precise UML group [173]. Although it is
traditional in computing to agree on formalisms before analyzing their mean-
ings precisely, this book tries to follow the opposite path. The reason for not
having adopted the graphical notations of UML, for instance, has been the
desire to use graphical diagrams to illustrate formally defined concepts, not
to develop formal concepts to match informal diagrams.

The approach presented here can also be contrasted to those formal meth-
ods to which facilities have been added afterwards to cope with object-oriented
features (see [147], for instance). Typically, object orientation is considered in
them as a programming language mechanism, which should be modeled truth-
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fully, whereas here the emphasis is on making the best use of object orientation
in the specification process.

The modeling problem of a doctors’ office is an example that has been
used to compare different specification and design methods. The presentation
in Sect. 7.3 has been adapted from [119].

The kind of recursive aggregates that were discussed in Sect. 7.5.7 are
known in the literature on object-oriented design patterns as a pattern called
‘Composite’ [65].



8

Components and Interfaces

As discussed in Chap. 2, a closed-system model describes how the system to
be implemented and its environment behave in connection with each other.
To use such a model as a basis for an implementation, the system part of the
model should be separated from the environment part.1 Similarly, the system
part can itself be partitioned into components that communicate with each
other. The purpose of this is that, once conventions for communication have
been agreed on, the components could be implemented independently of each
other, in either software or hardware.

This kind of partitioning and its effect on refinement is the topic of this
chapter. The plan for the chapter is as follows:

• Section 8.1 introduces partitioning of the variables and actions of a closed
system into components, and discusses how the components can interact
through shared variables and action parameters.

• In Sect. 8.2 we discuss non-interfering component refinements, where ac-
tions of only one component are refined. This leads to a simple methodolog-
ical guideline to start with an initial layer of specification, which basically
determines only interfaces, and to refine the actions of each component
independently. The resulting layers can always be composed into a refine-
ment where all component refinements are combined.

• More liberal component refinements are considered in Sect. 8.3, in order
to allow refining external interface actions also, i.e., actions that access
interface variables of a component from other components. This possibil-
ity is needed, for instance, for temporary refusal of external accesses, in
order to insert internal computing. Sufficient robustness conditions are de-
rived in this section to ensure composability of the individual component
refinements in this case also.

• In Sect. 8.4 we discuss how interfaces can be refined in component refine-
ments.
1It should be clear from context whether the word ‘system’ refers to the whole

closed system at hand or to the system part to be implemented.
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• The chapter ends in Sect. 8.5 with an example in which a simple one-
element buffer is refined in several steps into a reliable channel that uses
two unreliable channels and an alternating bit protocol for communication.

8.1 Components in a Closed System

As discussed in Sect. 6.3 (p. 179), a closed-system model describes ‘the whole
world’, although only those aspects of the world are made explicit that affect
the variables that we are interested in. Structurally this ‘whole world’ can be
viewed as consisting of interacting components, which communicate with each
other through shared interface variables, as discussed in Sect. 2.1.3 (p. 27).
In particular, the environment of an embedded system and the embedded
system itself are such components, and they may also themselves consist of
more elementary interacting components.

The purpose of partitioning a system into components can be understood
as division of different responsibilities in an implementation to the cooperating
components. Ultimately this is needed only for the final model, but usually
partitioning evolves gradually in the incremental steps in which a model is
constructed. To allow maximal freedom in this respect, we keep partitioning
into components as an extralinguistic issue, for which no specific facilities will
be provided in the action language. In this section we discuss, however, some
important issues associated with it.

8.1.1 Partitioning of State

As discussed briefly in Sect. 2.1.3 (p. 27), the responsibilities for state variables
are divided by assigning them to the different components. If X is the set
of variables involved in a specification (excluding possible abstract variables
that need not be implemented), and there are k components, we then have a
partitioning of variables in X into disjoint subsets Xi, i = 1, . . . , k,

X = X1 ∪ · · · ∪ Xk , Xi ∩ Xj = ∅ for i �= j ,

where variables in Xi are assigned to component i and are said to belong to
it, or to be local to it.

As for objects, which also partition the state,

• each object is assumed to be local to some component, i.e., the local vari-
ables of an object cannot be distributed to different components,2 and

• all objects that belong to the same leaf class are assumed to belong to the
same component.

2Since the subobjects of an aggregated object are, in fact, objects in their own
right, this does not prevent allocating them to different components.
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Since relations between objects are understood as global variables, parti-
tioning of variables needs to address them also.

A state predicate that depends only on local variables of one component
is also called local to that component. State predicate P is said to be separable
for component i if it can be expressed as a conjunction

P ⇔ Pi ∧ Q ,

where Pi is local to component i and Q is independent of variables in this
component.

8.1.2 Partitioned Action Systems

As discussed briefly in Sect. 2.2.2 (p. 30), the responsibilities for actions are
also divided between the components, so that each action is assigned to a
specific component. Even though an action may involve variables in several
components and, intuitively speaking, then requires some cooperation from
each of these, the responsibility for its execution will not be shared. However,
to know which components are involved in an action, it will be assumed in
the following that each participant role determines a unique component. When
objects of the same leaf class belong to the same component, this is not an
essential restriction.

To discuss the partitioning of actions more precisely, let

S
∆
= P ∧ �[A]X ∧ F (8.1)

be a canonical TLA formula that corresponds to a closed-system specification
and, as before, let symbol A also stand for the set of individual actions of
which the TLA action A is formed as disjunction. Similarly, let F also stand
for the sets of individual (strong and weak) fairness conditions of which the
TLA fairness formula F consists.

Partitioning of (8.1) for k components then means that variables in X are
partitioned into sets of local variables Xi as discussed above, and that actions
in A are similarly partitioned into disjoint subsets of actions

A = A1 ∪ · · · ∪ Ak , Ai ∩ Aj = ∅ for i �= j ,

so that actions in Ai are assigned to component i, and are said to be local
to it. Obviously, such a partitioning of actions also induces partitioning of
fairness conditions,

F = F1 ∪ · · · ∪ Fk ,

so that Fi concerns only actions in Ai. Formula (8.1) then has the partitioned
form

S ⇔ P ∧ �[A1 ∨ · · · ∨ Ak]X1∪···∪Xk
∧ F1 ∧ · · · ∧ Fk . (8.2)
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When an action in Ai is executed, it is said to be executed by component
i. For each non-stuttering step in a behavior it is important to distinguish the
component that has executed the associated action. Therefore,

• the partitioning of actions is assumed to be exclusive in the sense that, for
i �= j,

Ai ∧ Aj ⇒ StutterX .

An action system for which such a partitioning of variables and actions
has been imposed is called a partitioned action system. Without partitioning,
a specification can be understood as the special case of only one component.
Partitioning of this component may, however, be imposed in refinement steps,
as will be described below.

8.1.3 Interface Variables

In principle, each TLA action involves all variables in X, independently of
whether it changes their values or not. In an operational interpretation, how-
ever, an action does not generally need to access all variables in X. A notion
of dependence on variables is therefore needed.

Intuitively, an action A write depends on variable x, x ∈ X, if it may modify
the value of x, and it read depends on x if its enabling condition EnabledA or
its effect on state variables may depend on the value of x. To be more precise,
we define these dependences on x, or accesses of x, by textual occurrences
of x ′ or x in the action-language representation of action A, independently of
whether these occurrences are semantically significant or not. Therefore, read
and write dependences fall outside of TLA, and may in some situations be
changed without affecting the TLA meaning of an action.

Since communication between components takes place through shared
variables, the local variables in component i are subdivided further into inter-
face variables (Xifc

i ), which are also accessible for actions of other components,
and private variables (Xpvt

i ) that are not,

Xi = Xifc
i ∪ X

pvt
i , Xifc

i ∩ X
pvt
i = ∅ .

Interface variables will be collectively denoted by Xifc,

Xifc = Xifc
1 ∪ · · · ∪ Xifc

k .

When an action of one component read or write depends on a variable in
another component, this is called an external read or write access to it.

It is characteristic to superposition that no new write accesses can be
introduced for old variables, but new read accesses can. To model situations
where external read accesses are also restricted to those that have already
been introduced, we define the set of concealed variables Xcnc

i to be a subset
of Xifc

i , Xcnc
i ⊆ Xifc

i , for which even no new external read accesses are allowed
in superposition.
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8.1.4 Interface Actions

In addition to its own variables, a component is allowed to access only interface
variables in other components, as discussed in Sect. 2.2.2 (p. 30). Actions in
Ai may therefore depend only on variables in Xi ∪ Xifc.

An action in Ai is said to be an interface action if it (potentially) depends
on (interface) variables in other components. Otherwise it is private to com-
ponent i. When this distinction is relevant, symbols Aifc

i and A
pvt
i will be used

to denote these sets of actions, Ai = Aifc
i ∪ A

pvt
i , Aifc

i ∩ A
pvt
i = ∅.

For a behavior it may be important to distinguish whether a step is as-
sociated with an interface action or not. If it is, the identity of the interface
action will also be significant. Therefore, we assume that

• each individual interface action B ∈ Aifc
i is non-stuttering and disjoint

from all other actions.

That is, B ⇒ ¬StutterX and, if C is any other individual action in Ai, then
B ∧ C is identically false.

�
ifc�

�
ifc�

� ifc�
� ifc�

� pvt�
� pvt�

�
pvt� �

pvt�

Fig. 8.1. Illustration of the partitioning of variables and actions

From the viewpoint of component i, actions in Aifc
i are local interface

actions, while those in Aifc
j , i �= j, are external to it. The situation is illustrated

for two components in Fig. 8.1.
Notice that interface actions in Aifc

i are said to be executed by component
i alone, not jointly with those other components to which they are external.
About the role of the latter components we say that the execution is either
allowed or refused by them.

8.1.5 Communication Through Action Parameters

Behaviors in a state-based approach are completely determined by the values
that state variables have in consecutive states. In principle, all communica-
tion between components is therefore determined by the values that interface
variables have in behaviors.

In parameterized interface actions it may, however, be the parameters
that describe the values to be communicated between components. This is
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Fig. 8.2. Communication through an action parameter

illustrated in Fig. 8.2, where x denotes a parameter representing an input or
output value transmitted between two components in action Aifc

1 . In such a
situation, the values of the parameter need not only serve an auxiliary purpose
in behaviors, but may be essential for them. On the other hand, the interface
variables (in other components) that are affected by these parameter values
may themselves be inessential in the sense that they may be quantified state
variables in terms of TLA.

In such situations we implicitly assume an additional auxiliary component,
which can be thought of as a channel between the communicating components,
with a variable for intermediate storage of parameter values. A parameterized
interface action is then, in fact, shorthand for two consecutive actions: one
that stores the parameter value in this channel variable, and the other that
immediately removes it from there.3 With this assumption the state-based
character of the approach is not violated.

In general, a parameter x in an interface action need not be a pure input
or output value, which is transmitted from one component to others, but a
more general interput value, which depends on variables in several components
and may affect variables in all of them. Obviously, an implementation may
then need complex communication between the components involved for the
components to agree on an interput value that suits them all. Terms ‘input’
and ‘output’ now refer to the reduced situations where one of the partners
gives no choice in such a negotiation.

8.1.6 Components and Refinement

A refinement of a partitioned system S, corresponding to TLA expression (8.2)
on p. 265, should normally honor the component structure of S, i.e., either
preserve or refine it. This means that the partitioning of variables and actions
into components would remain compatible with their old partitionings. When
partitioned systems are composed, compatible partitionings are assumed, and
actions of different components will not be synchronized.

If a closed-system specification is derived in this manner, one can start
with a one-component system and introduce an eventual component structure

3Here we assume that there is no possibility for other actions to intervene. The
situation is, of course, different if a channel is modeled explicitly in a specification.
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stepwise. This structure is then only an add-on to the closed system, with no
immediate effect on the kinds of refinement steps that can be taken. Since the
whole closed system is available in each refinement step, interfaces between
components – expressed in terms of interface variables and interface actions
– can then be modified in an arbitrary fashion allowed by the refinement
methodology. Only in the end are these interfaces important, since in the
final specification they have to be implementable with those facilities that are
available for implementation components.

Therefore, if the total system is allowed to be refined arbitrarily in each
step, its component structure has only an intuitive role in determining the
kinds of refinements that are needed to achieve modular implementability by
components. This has the drawbacks that

• component structure is not utilized for guiding the division of labor in the
refinement effort, and

• there is no a priori guarantee that parallel, aspect-oriented branches of
refinement could be composed so that their liveness properties would also
be preserved.

These considerations raise questions about the role of components in spec-
ifications. Before proceeding we therefore need to analyze this role briefly.

8.1.7 Modularity by Components

Components are usually understood as entities that can be described inde-
pendently. This view is, however, somewhat problematic, since a description
of a component always includes some assumptions about how it will be used
by other components, which means modeling the component together with
(some assumed properties of) its environment.

In practice, independence of components is achieved by giving assumptions
on other components in interface definitions, which then have to be frozen
before a description of the total system or the components is possible. The
closed-system paradigm makes such assumptions explicit by always modeling
a component and its environment together, and it thereby allows modeling of
component interaction at a higher level of abstraction.

What is then the purpose of components? To understand their role in a
(closed-system) specification process, we start from their role in implementa-
tion:

• In implementation, the purpose of components is to provide modularity,
where component implementations are composable into an implementation
of the total system.

For specification we then adopt the analogous view:

• In specification, the purpose of components is to provide modularity, where
component refinements are composable into a refined specification of the
total system.
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By composability we mean here that the composition of component refinements
is a refinement, in which the liveness properties of the individual component
refinements are also preserved.

Notice that this view of specification components differs from the con-
ventional view, where specification-level and implementation-level concerns
are mixed. Starting from the idea that components are described indepen-
dently, that view presumes independent implementability of component spec-
ifications, which is an unnecessarily strong requirement for the composability
of specification components.

Closed system at
a high level of abstraction

· · ·

partitioning

· · · · · ·

· · ·

· · ·

component refinements

composition

Component
�

Component �

Refined
component

� Component � Component
� Refined

component �

Refined
component

�
Refined

component �

Fig. 8.3. Utilizing components in a closed-system specification process

The general idea of componentwise refinement of closed-system specifica-
tions is illustrated in Fig. 8.3. A crude model is first given at a high level of
abstraction, with focus on cooperative behaviors. This specification is then
partitioned into components, which are refined by separate (sequences of)
component refinements. Each component refinement is assumed to refine only
one component in the specification, and the resulting layers are composed in
the end. In the following sections we will analyze such component refinements
in more detail.

Technically this is a special case of aspect-oriented development (see
Sect. 6.3.2, p. 180), where the aspects now correspond to components. Com-
pared to the general case, the different branches of refinement are here re-
stricted to concern single components, but some guarantees are needed that
these branches will be composable in the end.
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Review Questions

Question 8.1.1 How does communication between components take place
in a partitioned system?

Question 8.1.2 What is meant by ‘interput’ in this book?

Question 8.1.3 Why are implicit channel components sometimes assumed?

Question 8.1.4 What are all the requirements for a partitioning of an action
system and for the associated interface actions?

Question 8.1.5 Does partitioning into components have any effect on the
TLA meaning of partitioned systems?

Question 8.1.6 What is the use of specification components, if they cannot
be implemented independently?

8.2 Non-interfering Component Refinements

Utilizing component structure in the refinement of a partitioned system re-
quires that its components can be refined independently, and that the resulting
refinements are composable. A straightforward way to ensure composability
of different refinements is that these refine mutually disjoint sets of actions.
In this section we therefore consider component refinements where the actions
of only one component are refined.

8.2.1 Non-interference Conditions

Given a partitioned system S that corresponds to TLA expression S in (8.2)
on p. 265, refinement by superposition refines only component i in S if the
following conditions are satisfied:

• The initial condition P is strengthened only if it is separable for compo-
nent i, in which case it can be strengthened by conjoining it with a state
predicate Qi that is local to component i.

• New variables and actions are introduced only to component i.
• Only actions in Ai are explicitly refined, and default refinements (with de-

fault fairness requirements) are taken for the actions of other components.

Let Ti now be such component refinements of S for all i, T i ⇒ S, and let

T = T1 ⊕ · · · ⊕ Tk
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denote their weakest composition, defined as the composition where no further
variables are introduced, no further strengthening is given to the conjoined
initial condition, and actions of each component i are taken ‘as such’ from Ti.

The first of the above conditions guarantees that, if S and all Ti have
satisfiable initial conditions, then the initial condition of T is also satisfiable.
The second condition ensures that the liveness properties of all Ti are also
satisfied by T, i.e., T ⇒ T1 ∧ · · · ∧ Tk ⇒ S.

The two conditions are therefore sufficient to guarantee composability of
component refinements. The following additional assumptions also ensure that
the associated component structure is preserved:4

• Variables in each component remain in the same component.
• Each refined action remains in the component of its ancestor.
• Only the component that is refined may be subdivided into further com-

ponents, which has to be done in a manner that satisfies the general re-
quirements for partitioning.

When all the above conditions are satisfied, component refinements will
be called non-interfering. Although non-interfering component refinements
do not interfere with each other, they may also affect, in a restricted manner,
other components than the ones being refined. For instance, the guard of a
local interface action could be strengthened using additional read accesses to
interface variables in other components.

Obviously, non-interfering component refinements satisfy the requirements
for composability, but they have the drawback of not allowing effective in-
terface refinement. Therefore, there is a need to relax the non-interference
condition, as will be discussed below in Sect. 8.4.

8.2.2 Design by Non-interfering Refinements

In conventional design methods, interface definitions are usually given first,
after which the different components can be designed independently. With
non-interfering component refinements this approach can be adapted to closed
systems as follows.

At first, a partitioned initial specification layer is given, where variables
X and actions A have been partitioned into disjoint subsets associated with
different components, with special focus on interface variables and on interface
actions in each component. With such a partitioning, each of the components
can be refined by non-interfering component refinements, with a guarantee
that these are composable into a refinement of the original layer, as illustrated
in Fig. 8.3 on p. 270.

Obviously, this method can also be applied recursively, so that components
are partitioned into smaller components that are refined independently from
each other.

4Some of these assumptions will be relaxed in Sect. 8.4.
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It is often appropriate to start system specification from its external in-
terface. The first model of an embedded system, for instance, could then be
one that specifies the ‘technical possibilities’ of its external interface only,
without telling how this interface is used in the particular application. Such
an initial interface specification layer, denoted in the following by I, is also a
closed system, which consists of two components called the environment part
and the system part, respectively. Therefore, layer I contains a model of both
parts, but at a generic level only, which describes how an arbitrarily behav-
ing environment and an arbitrarily behaving system can interact through this
interface.

The assumptions that can be made of environment behavior in the par-
ticular application can then be given as layer E, which is a non-interfering
component refinement of the environment part in I. Correspondingly, system
behavior can be specified as layer S, which is a non-interfering component
refinement of the system part in I. Obviously, E and S need not be produced
in single refinement steps, but can result from several parallel and consecutive
steps.

I

E S

E⊕ S

Fig. 8.4. Illustration of independent environment and system refinements

Composing the two refinements E and S (see Fig. 8.4) now gives a model
of how the system behaves when combined with an environment that behaves
according to the assumptions expressed by E. Properties proved of the weakest
composition E⊕ S are then properties that will hold in a correct implementa-
tion, provided that the environment also behaves correctly.

An implementation (of the system part) can now take S as its basis. Obvi-
ously, environment variables and environment actions in S describe assump-
tions on the environment and will not be implemented.

In this design method it is assumed that the interface between environ-
ment and system parts, as expressed by I, is directly implementable. If I is
a high-level description of interactions, this need not, however, be the case.
For instance, environment actions in I, and hence also in S, may access such
system variables that cannot be accessed by the environment in a realistic
implementation. Different kinds of refinements are then needed, where the
interface is modified so that an implementation becomes feasible. Such refine-
ments will be discussed below in Sect. 8.4.
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8.2.3 Dealing with Environment Errors

Although layer E in Fig. 8.4 is not needed for the implementation of the
system part S, the weakest composition E ⊕ S determines the properties of
the combined system. However, the real environment in which a system will
be used can never be prescribed by a specification E. Instead, E should be
taken as an assumption of how a ‘normal’ environment behaves, although real
environments may also exhibit unanticipated errors and faults.

If E also models behaviors where the environment behaves erroneously, or
where faults take place, then the weakest composition E ⊕ S also determines
how the system part should behave in such situations. Therefore, the spec-
ification, as given in terms of the pair (E, S), also specifies how the system
should react to such anticipated errors.

On the other hand, if E disallows an erroneous behavior (that is allowed
in I), then the composition E ⊕ S does not allow it, either. Therefore, the
specification, as given in terms of the pair (E, S), does not take any stand to
what the system should do in such situations. This leaves complete freedom
for the implementor to handle such situations.

In the design of fault-tolerant systems one can compose system refine-
ments with several different environment refinements, which exhibit different
degrees of faulty behaviors, and analyze the properties of these compositions.
Figure 8.5 illustrates this as follows.

I

E
�

S
�

S

E �

E
� ⊕ S

�

E
� ⊕ S

E � ⊕ S

Fig. 8.5. Illustration of design for fault tolerance

Let E0 (S0) constrain only environment (system) actions in I with the
assumption that both partners are ‘well behaving’. Their weakest composition
E0 ⊕S0 then models total behaviors with this same assumption. Suppose now
that the designers also want to be prepared for those environment faults that
are modeled by a weaker environment refinement Ef, of which E0 can be
understood to be a refinement.
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The design of the system can now be developed as another system re-
finement of I, S, in which system actions are also prepared for those faulty
environments that are allowed by Ef. If the pair (E0, S0) is taken as the min-
imum requirements for correctness, then the correctness of the fault-tolerant
design requires that E0 ⊕S ⇒ E0 ⊕S0, whereas fault-tolerance properties can
be analyzed from the composition Ef ⊕ S.5

8.2.4 Example: Database Transactions

As an example of independent refinements, consider the modeling of a serial-
izable database system that behaves as follows.

Interactions with the system are assumed to consist of transactions that
may contain any number of read and write requests on a database. Each
transaction will either end successfully or will be aborted. Abortion takes place
either as a result of an explicit request from the environment, or because the
system has for some reason found it impossible to complete the transaction
successfully. The latter situation will be indicated by a special return value
‘abort’ for the next request.

No limit will be given to the number of transactions that may proceed
concurrently, but their serializability will be required, i.e., the total effect is
required to be as if the successfully ending transactions had been executed in
some sequential order. Aborted transactions therefore have no effect on the
values in the database.

Class Definitions

A generic environment is modeled as a collection of Client objects, each
having a unique identification number id:

class Client = {const id : N} ,

∀c, d ∈ Client : (c �= d ⇒ c.id �= d.id) .

Client objects are assumed to communicate with the system part through
Transaction objects, which are part of the interface within the system part.
Figure 8.6 illustrates the intended state transitions of Transaction objects.
Each t ∈ Transaction is always either Free or Occupied with some client
c ∈ Client. When Occupied, it may be Ready for the next request, Busy

when the system is processing a request, or prepared to give a response to a
request (Resp).

Class Transaction can now be defined as

5If S � offers enough nondeterminism in situations where the environment behaves
incorrectly, then S can be designed as a refinement of S � , in which case

� � ⊕ � �

� � ⊕ � � is trivially true.
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Fig. 8.6. State diagram for
� � � � � � � � � � �

objects

class Transaction = {state Free∗, Occupied}

where Occupied = {id : N; op, par, reply : U; state Ready, Busy, Resp} ,

where variable id indicates the client with which a transaction is occupied,
variables op and par contain the name of a requested operation and the
associated parameter list, respectively, and a return value will be computed
into variable reply.

The number of concurrent transactions can be regulated by the size of
class Transaction.

Actions

A transaction is assumed to start with an environment action Open, which
establishes an association between a Client and a free Transaction object:

Open(c : Client; t : Transaction) : t.Free→ t.Ready ′

∧ t.id ′ = c.id .

No restrictions are given for the number of transactions opened by the same
Client.

When an associated Transaction object is Ready, a Client object can
issue a request,

Request(c : Client; t : Transaction; req, p : U) : t.Ready

∧ c.id = t.id→ t.Busy ′

∧ t.op ′ = req

∧ t.par ′ = p ,

to which the system reacts by computing an appropriate return value,
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Compute(t : Transaction; v : U) : t.Busy→ t.Resp ′

∧ t.reply ′ = v .

Finally, the client receives the response and possibly also closes the transac-
tion:

Receive(c : Client; t : Transaction; v : U) : t.Resp

∧ c.id = t.id

∧ v = t.reply→ t.Ready ′ ,

Receive and close(c : Client; t : Transaction; v : U) : t.Resp

∧ c.id = t.id

∧ v = t.reply→ t.Free ′ .

Of these actions, Request, Receive, and Receive and close are interface
actions, and we assume that they are all assigned to the environment, whereas
action Compute is a private system action.

No fairness requirements have been given at this level, where the purpose
was only to give a ‘technical’ basis for the interaction between the system and
environment parts.

Outline for Environment and System Refinements

Taking the above as an interface specification layer I, an environment re-
finement E of I may restrict the requests to be only read, write, close, and
abort requests that have parameter lists of appropriate lengths. Reactions to
requests that violate these formal requirements can be left unspecified in E.

As for liveness properties, E can impose fairness assumptions on actions
Receive and Receive and close, in order to ensure that each response that
has been computed will also be received by the client, and to exclude nonter-
minating transactions with an infinite number of requests.

A system refinement S, on the other hand, can model the contents of the
database, and use it for computing the return values for read requests. The
range of possible data values can also be specified in this connection, and S
may or may not specify how to react to requests with non-existing keys or
out-of-range data values.

Instead of imposing serializability only in the most nondeterministic man-
ner, some well-defined policy – like two-phase locking – can be specified in
S for modeling the use of the database. A transaction should not be aborted
in S, unless a situation is reached where serializability cannot be otherwise
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achieved. Of course, the trivial policy of aborting all transactions is therefore
not a reasonable policy for S.

Fairness requirements should also be imposed in S on action Compute, in
order to ensure that some response – possibly abortion – will always eventually
be determined for each request.

Notes on Liveness Properties

An important liveness property to be proved for the weakest composition
E ⊕ S is that each request will eventually get some response. Unfortunately
this cannot be guaranteed by either party alone, but only by the combination
of their fairness assumptions: getting a response to a request may depend on
other clients terminating their transactions, which in turn depends on the
system responding to their requests.

A closed-system model avoids the difficulties that may arise in dealing
with this kind of mutually recursive situations, where system liveness prop-
erties depend on environment liveness properties and vice versa. Although
it is the case in the two-phase locking policy, for instance, that the system
will eventually respond to each request only if each transaction will eventu-
ally terminate, and a transaction will eventually terminate only if the system
eventually responds to each request, the desired liveness properties can be
proved simply on the basis of the fairness assumptions specified for the closed
system.

In this example we could have specified the desired liveness properties
of the total system already in the interface specification layer I. In that case
proving that both E and S preserve these properties would have been sufficient
to guarantee that they are also satisfied by the weakest composition E ⊕ S.

Review Questions

Question 8.2.1 Why are non-interfering component refinements always com-
posable?

Question 8.2.2 When the design method of Sect. 8.2.2 (p. 272) is used,
which layer in the specification determines what to implement? What is the
role of the environment refinement E?

Question 8.2.3 How can different environment refinements be utilized in
the design of fault-tolerant systems?

Question 8.2.4 What is the advantage of closed-system specifications in
proving liveness properties?
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Exercises

Exercise 8.2.1 Discuss correct and faulty behaviors in the gas-burner ex-
ample of Chap. 2 in the light of Sect. 8.2.3 (p. 274). If layer I generates all
possible behaviors of interface variables, which of these would be excluded by
E0 (or by S0), if it constrains only environment actions (or system actions,
respectively), assuming that both partners are ‘well behaving’?

Exercise 8.2.2 Give environment and system refinements E and S for the
database example, as outlined in Sect. 8.2.4 (p. 275). Use two-phase locking
in S.

Exercise 8.2.3 Show that E⊕S in your construction in Exercise 8.2.2 implies
the required liveness properties.

Exercise 8.2.4 Concerning system refinement S in Exercise 8.2.2, consider
the possibilities for handling environment errors in refinements of S.

8.3 Robust Component Refinements

A component needs to cooperate in all interface actions that concern it. In-
tuitively speaking, it executes of these only those that are its local interface
actions, whereas external interface actions are either allowed or refused by it.

Since a non-interfering component refinement cannot refine external in-
terface actions, it cannot, for instance, refuse them by strengthening their
enabling guards. Our design methods lead, however, often to situations where
this would be desirable. In this section we therefore discuss the need for re-
laxing the non-interference requirement, and how this can be done without
violating the crucial property that component refinements remain composable.

When non-interference is relaxed, composability obviously requires some
constraints on how local and external interface actions are allowed to be re-
fined in component refinements. Since no necessary and sufficient conditions
exist for this purpose, the problem is to find conditions that are sufficient but
not unduly restrictive. The conditions that will be derived in the following
will be called robustness conditions.

8.3.1 Need for Relaxing Non-interference

Non-interfering component refinements offer only limited possibilities to refine
component interfaces, as defined by interface variables and interface actions.
In particular, it is not possible for a non-interfering component refinement
to refuse external interface actions even temporarily. The need for this is,
however, evident in the following refinement technique.
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When a refinement needs new actions that need to be executed before a
given imported action, the enabling of the latter can be postponed by strength-
ening its guard with an additional condition that is turned true when the new
actions have been executed. This technique is particularly useful in connection
with distributed systems, where its purpose is to make global guards imple-
mentable in a distributed fashion.6 Obviously, such a postponement of execu-
tion is not possible for external interface actions, unless the non-interference
requirement for component refinements is relaxed.

Put

Get

�

�

Environment Data storage

Reorg

Fig. 8.7. Illustration of postponing the enabling of external actions

As a generic example of this technique, consider specification of a data
storage with external actions Put(x) and Get(y) for storing and retrieving
data values x and y, respectively. At a high level of abstraction an abstract
data structure can be used for data storage, and actions Put and Get can then
be enabled whenever there is room for more data, or the storage is nonempty,
respectively. At a lower level of abstraction with concrete data structures,
the data-storage component may, however, sometimes need internal storage
reorganization. In a refined specification the need for such reorganization may
therefore enable a new action Reorg and disable Put and Get temporarily,
until reorganization by Reorg has taken place (see Fig. 8.7).

Although this is intuitively just a refinement of the data-storage compo-
nent, external interface actions also need to be refined in it. The reason for
this phenomenon is that, although external interface actions have been as-
signed to other components, their execution also requires cooperation from
this component. When this cooperation is made more explicit at lower levels
of abstraction, effective interface refinement is needed.

In this example a simple kind of interface refinement is sufficient, which
makes it possible for the data-storage component to refuse external interface
actions temporarily by strengthening their guards. We also notice that without
a fairness requirement for Reorg such a component refinement would not be
composable with environment refinements that add fairness requirements to
actions Put and Get. This leads to the crucial question about the feasibility
of relaxing the non-interference requirement: if other components are refined
independently, how can it be ensured that all these refinements still remain
composable?

6Distributed systems will be discussed in Chap. 9.
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8.3.2 Independence of Interput Parameters

If an interput value (i.e., the value of a non-participant parameter in an in-
terface action; see Sect. 8.1.5, p. 267) is not uniquely determined, further
constraints can be imposed on it in subsequent refinement steps. If such con-
straints are imposed in different component refinements, they may, however,
be conflicting.

To deal with this problem, which arises when interface actions can be
refined both as local and as external interface actions, the responsibility for
each interput parameter is assigned to one of the components involved in the
action. We then say that the parameter is local to that component. Intuitively
this determines the component that is assumed to make the final decision on
the parameter value. Notice that this component need not be the one that is
responsible for the action itself. For instance, the parameters in actions Put
and Get in Fig. 8.7 may be determined by different components, although
both actions are executed by the environment.

To avoid interference between the responsibilities of different components,
we will assume that the following assumption is satisfied in interface actions:

• The values of interput parameters xi for which component i is responsible
are required to be independent of the values of other interput parameters.

More formally, if ∃xi, x : g(xi, x) is the enabling guard of an interface action,
where xi denotes those interput parameters that are local to component i,
and x denotes all other interput parameters, then this independence condition
can be formulated as

g(xi, x) ∧ g(yi, y) ⇒ g(xi, y) . (8.3)

8.3.3 General Assumptions

The non-interference condition is now relaxed so that external interface ac-
tions can also be refined:

• In addition to local actions, external interface actions can also be refined
in a component refinement.

Before formulating the robustness conditions, under which component re-
finements still remain composable, a few simplifying assumptions will be made
on interface actions and their refinements.

As for non-participant parameters in interface actions, we assume that
they all model values to be transmitted between components. This makes it
natural to make the following assumptions:

• No fairness requirements are associated with interput parameters in inter-
face actions.

• New interput parameters can be introduced only for the component that
is refined, and the independence condition (8.3) must remain satisfied in
their presence.
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• No interput parameters are allowed to disappear in component refine-
ments, and only those parameters can be constrained that are assigned to
the component being refined.

To make the last assumption more precise, let ∃xi, x : g(xi, x) be the en-
abling guard of an interface action A, where xi denotes the interput param-
eters assigned to component i, and x denotes all other interput parameters,
and let the (disjunction of the) enabling guard(s) of the refinement(s) of A be
∃xi, x : hi(xi, x) in a component refinement (of component i). We then require
that

hi(xi, x) ∧ g(yi, y) ⇒ hi(xi, y) . (8.4)

The independence condition (8.3) is then obviously also preserved.
As for fairness requirements in interface actions, we make the following

simplifying assumptions:

• A component refinement introduces no new fairness markings to external
interface actions and, if an external interface action has fairness markings,
it is given only one refinement.

• All fairness markings on interface actions are associated with participant
roles for which the associated classes are finite.

The first of these assumptions has the effect that additional fairness properties
are associated with an interface action only in the component refinement for
which the action is local.7 The second assumption simplifies essentially the
conditions under which fairness properties are preserved in composition.

8.3.4 Robustness Conditions

Compared to the situation discussed in Sect. 8.2.1 (p. 271), the weakest com-
position of component refinements Ti (of a partitioned action system S),

T = T1 ⊕ · · · ⊕ Tk ,

is now defined to include also synchronizations of the refined interface actions,
with fairness markings taken from the component refinements for which the
interface actions are local.

As far as the initial condition of T is concerned, the situation is the same as
with non-interfering component refinements: if the initial condition of S is sat-
isfiable, and the condition on its strengthening given in Sect. 8.2.1 (p. 271) is
satisfied by each Ti, then the conjoined initial condition of T is also satisfiable.
The safety properties of all Ti are obviously also preserved in T.

The crucial question for the composability of Ti, i.e., for T ⇒ T i to be true
for all i, is then whether the fairness requirements of all Ti for interface actions

7Notice that splitting an action with fairness requirements could also strengthen
such requirements.
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are also satisfied by T. Compared to S, additional fairness requirements for
these actions can be introduced only in the component refinements for which
these actions are local. Therefore, the purpose of robustness conditions, to be
introduced below, is to ensure that T satisfies the fairness requirements given
for local interface actions in each component refinement Ti. Obviously, the
reason why a fairness requirement for a local interface action in Ti might not
be satisfied in T is that the action could be disabled when it is synchronized
with corresponding action refinements in other component refinements Tj.

Letting Ti
0 denote such a reduction of Ti where fairness assumptions are

restricted to those local actions in component i that are not refinements of
interface actions in S,8 the following result is helpful in showing that a property
is satisfied by T :

• If a property is satisfied by T i
0, it is also satisfied by T .

Notation

In the following, A will denote an interface action in S that is local to com-
ponent i and external to component j, j �= i. The enabling guard of A will
be denoted by g. When no participant list is given, then all participants are
assumed to be existentially quantified. Shorthand notation (x . . . ) will be used
for a participant list to indicate that x is a set of actual participant objects
for certain participant roles, and that all other participants are existentially
quantified. Similarly, notation (x . . . ; z . . . ) will indicate that x is a set of actual
participants for certain participant roles that were present already in layer S,
and that z is a similar set for roles added in a component refinement.

Persistence on External Interface Actions

Consider first component refinement Tj for which interface action A is external.
Such scenarios are obviously possible where (each refinement of) action A is
disabled in T j at the moments when (a refinement of) A would be enabled in
Ti. In the presence of several components to which A is external, the associated
refinements may also ‘conspire’ in disabling A so that each of them would allow
A intermittently, but their composition would never do this. Obviously, if T i

imposes fairness requirements on A, these might in these cases not be satisfied
in the composition T .

To formulate conditions under which these kinds of scenarios can be
avoided, let hj(x) stand for the disjunction of the enabling conditions of all
refinements of A(x) in Tj. Here, x covers the whole participant list in layer S.
If new participants have been added to the refinements, they are assumed to
be existentially quantified in hj(x).

8Such actions are either private actions in component
�
, or newly introduced

interface actions that contain only read accesses to variables in other components.
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We now say that component refinement Tj is persistent in allowing external
interface action A(x) for participants x if there exist state predicates qj(x) and
pj(x) for which the following conditions are satisfied by T

j
0:

�(hj(x) ⇔ g(x) ∧ qj(x)) , (8.5)
�(pj(x) ⇒ qj(x)) , (8.6)
��g(x) ⇒ ��pj(x) , (8.7)
stable pj(x) unless 〈A(x)〉 . (8.8)

The intuition behind these predicates is as follows. The role of qj(x) is to
express how the possibilities for executing (refinements of) action A(x) have
been constrained in Tj, as is shown by (8.5). Condition (8.6) then ensures
that these constraints have no effect when predicate pj(x) is true. Finally, if
the original guard of action A(x) is repeatedly true, conditions (8.7) and (8.8)
guarantee that pj(x) will eventually become true and also stay true, unless
(some refinement of) action A(x) is executed.

Insistence on Local Interface Actions

Consider now component refinement Ti for which interface action A is local.
The possibility for refining A into several different actions with individual fair-
ness requirements gives rise to further undesirable scenarios. This is because
the other components might systematically disable A at the moments when
a particular refinement (with a fairness requirement) would be possible for
T i, but would still allow executing other refinements of A infinitely often. The
same phenomenon also arises, when new participants are added to A in T i and
fairness markings are associated with these.

To formulate conditions for avoiding such scenarios, let B be a refinement
of action A in Ti, and let h be its enabling condition. Furthermore, let hi stand
for the disjunction of the enabling conditions of all refinements of action A in
Ti.

We now say that component refinement Ti is insistent on local interface
action B for the participant roles of x and z if

��h(x . . . ; z . . . ) ⇒ ��〈B(x . . . ; z . . . )〉 ∨

��(hi(x . . . ) ⇒ h(x . . . ; z . . . )) (8.9)

is satisfied by Ti
0.

The intuitive meaning of this is that, if B(x . . . ; z . . . ) is repeatedly enabled
in Ti

0 without being executed, then eventually it is always enabled whenever
any of the refinements of A is enabled for x. Obviously, if z is an empty list
and B is the only refinement of A in T i, then hi(x . . . ) ⇔ h(x . . . ; z . . . ), and
the insistence condition (8.9) is therefore identically true.
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Robustness

A component refinement is now called robust if it is

• persistent in allowing all external interface actions, and
• insistent on local interface actions for those roles x (of old participants)

and z (of new participants) for which fairness markings are given.

It is left as an exercise to the reader to show that, under the general assump-
tions presented above, robustness of component refinements is a sufficient
condition for their composability (Exercise 8.3.3).

Review Questions

Question 8.3.1 What is the intuitive reason for the need of interfering com-
ponent refinements?

Question 8.3.2 Why is the independence condition for interput parameters
needed?

Question 8.3.3 What are all the conditions for robust component refine-
ments?

Exercises

Exercise 8.3.1 Do non-interfering component refinements always satisfy the
robustness conditions?

Exercise 8.3.2 Show that the independence condition (8.3) on p. 281 for
interput parameters is preserved by the requirement (8.4) on p. 282.

Exercise 8.3.3 Prove that the weakest composition of robust component
refinements satisfies the liveness properties of the component refinements.

Exercise 8.3.4 Simplify the robustness conditions for component refine-
ments for the case where all state variables are global, i.e., there are no objects.

Exercise 8.3.5 How could the persistence condition for external interface
actions be modified to allow several refinements in the presence of existing
fairness requirements also?
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8.4 Interface Refinement

When interactions have been defined at a high level of abstraction, they need
not be realistic for direct implementation. Therefore, the need may arise to
refine ‘abstract interactions’ into more elementary ‘concrete interactions’. Ob-
viously, this can always be done when the total system is refined, but in this
section we discuss how such an interface refinement can also be done in com-
ponent refinements.

Above it was assumed that component refinements totally conform to the
original partitioning of variables and actions into components. In interface
refinement this assumption may need to be relaxed. Another interesting point
is that, since both local and external interface actions can be refined in robust
component refinements, an interface between two components can often be
refined by refining either one of these components.

8.4.1 Goals for Interface Refinement

By interface refinement we understand refinements that affect interface actions
and variables. The following important varieties of interface refinement can
be distinguished:

• change of interface data representation,
• temporary disabling of interface actions, and
• refinement of atomicity of interactions.

Change of interface data representation means changing of interface vari-
ables and changing the parameters of interface actions. This can be done by
data refinement (see Sect. 6.4.2, p. 186) and action transformations in com-
ponent refinements.

Temporary refusal of external interface actions in robust component re-
finements was discussed in the previous section.

Refining the atomicity of an interaction means that an interface action
is split into more elementary actions. The responsibilities for these can then
be assigned to the different parties involved, which reflects the idea that an
implementation of the original interaction needs some cooperation from all of
them. Loosening of the required synchronization between the parties is often
important in such refinements.

In the rest of this section we will mainly discuss the problems associated
with atomicity refinement of interactions.

8.4.2 Changes in Responsibilities

Although each interface action is said to be executed by the component to
which it is local, its implementation requires some cooperation from all compo-
nents involved. In refining the atomicity of an interface action the roles of other
components may therefore become explicit by actions that will be assigned
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to them, and this may also affect the partitioning of variables and actions. In
other words, even when interface refinement takes place by component refine-
ment, it may interfere with other components by assigning additional duties
to them.

In terms of TLA, partitioning into components has no significance. There-
fore, a refinement remains a refinement independently of a possible realloca-
tion of responsibilities. This means that reallocation of responsibilities can be
considered separately from the composability problem of component refine-
ments, which was discussed in previous sections.

Obviously, for partitioning into components to have any significance, arbi-
trary changes to this partitioning should not be allowed. The relaxed principles
that we adopt here are the following:

• Internal subdivisions within Xi and Ai can be changed in refinements of
component i.

• Variables and actions of component i can be moved to other components
in refinements of component i.

• A component refinement may add new variables and new actions, possibly
with associated fairness requirements, to other components also.

• Reallocations and additions to other components stay valid in composition
with other component refinements.

• All changes in responsibilities honor the general properties required of
partitionings, even when composed with refinements of other components.

To be more specific about honoring the general properties of partition-
ings, the responsibility for an action A ∈ Ai, for instance, cannot be moved
to another component if it depends on variables in X

pvt
i . Similarly, a neces-

sary condition for changing an interface variable to become private is that it
belongs to the concealed subset Xcnc

i (see Sect. 8.1.3, p. 266), and that exist-
ing external accesses of x have been removed by data refinement and action
transformations.

As an extreme example of changes in responsibilities, consider the follow-
ing. If it is decided in an environment refinement that a real environment will
be replaced by a simulated one, then all variables and actions of the environ-
ment part are moved to the system part. Such an environment refinement can
then be composed with a system refinement, yielding a refined specification
with a simulated environment.

Conversely, we can think of a system refinement that moves all its respon-
sibilities to the environment. This would correspond to a situation where a
separate system part will not be used, and everything is implemented by rules
and activities imposed on the environment. This demonstrates that, although
an interface refinement can be carried out as a refinement of one component,
its feasibility cannot be judged without considering all parties concerned.
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8.4.3 Example: Simplifying an Interface Action

In a high-level specification an interface action may directly execute some
computation that an implementation should assign to private actions. As an
example of this, consider a closed system consisting of an environment com-
ponent (component 1) and a system component (component 2), where system
variable x ∈ Xcnc

2 (initialized as 0) is used in layer S to accumulate information
given by an environment action A ∈ Aifc

1 ,

A(i : Z) : T→ x ′ = f(i, x) ,

with f denoting some integer-valued function.

A
�

�

�

�
�

�

�
B

action refinement

C

�

Environment part System part

Fig. 8.8. Example of interface simplification

The problem with this interface is that all computing, i.e., evaluation of
function f, is done by an environment action, which therefore needs access
to the accumulated value x. A robust system refinement can, however, be
given, which refines the interface so that variable x is effectively removed, and
evaluation of f is moved to take place in a system action. This can be done
as follows (see Fig. 8.8 for illustration).

As for variables, new system variables s, j ∈ Xifc
2 , y ∈ X

pvt
2 are introduced,

initialized as true, 0, and 0, respectively. Interface action A, which is external
to the system component, is refined into B,

B(i : Z) : S.A(i)

∧ s = true→ j ′ = i

∧ s ′ = false ,

and a new private system action C is introduced,
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WFC : S.Stutter

∧ s = false→ y ′ = f(j, y)

∧ s ′ = true .

The fairness requirement in C ensures that this is, indeed, a robust component
refinement of the system part. Therefore, if an environment refinement adds a
fairness requirement on A, for instance, then the associated liveness property
is preserved in the weakest composition with this system refinement.

Obviously, invariant �(x = (if s = true then y else f(j, y))) now makes x

redundant and, since x is concealed and an environment refinement cannot
therefore introduce further dependences on it, it can be removed. Evaluation
of function f has then been effectively moved from an environment action A
to a system action C.

Although it is reasonable to make this interface refinement as a robust
component refinement of the system part, the same transformation could, in
fact, also be made as a robust (and non-interfering) environment refinement.
In this case, even the fairness assumption on C could be omitted. However,
assigning C to the responsibility of the system part, no further environment
refinement could then add this fairness property, the purpose of which would
be to prevent the system from stopping without executing C.

8.4.4 Example: Refinement of Communication

The normal method to refine the atomicity of an action A is to introduce
new actions which, together with a refinement B of A, accomplish what was
originally done by A alone. Compared to A, the enabling of B is then delayed
until the new actions have done all the preparatory work that enables B to
accomplish the job of the original A. Here we illustrate how this technique can
be used for refining the atomicity of communication between components.

Consider the situation illustrated in the upper part of Fig. 8.9. There, the
environment part gives an integer x to the system part in an atomic action A.
This corresponds to the level of abstraction at which one usually thinks about
communication between a user and an application program, for instance. For
simplicity it is assumed here that action A updates no environment variables.
Removing such restrictions will be discussed in the next subsection.

Since an implementation cannot be assumed to transmit arbitrary integers
atomically, a refinement is needed where the digits of x are transmitted one
by one. This can be expressed as a robust (and non-interfering) component
refinement of the environment part as follows (see lower part of Fig. 8.9).
The digits d of x are given to the system part by a new environment action
D one by one. Once all of them have been transmitted, action B, which is a
refinement of A, can reconstruct x from them. By proving the invariant that
this integer is, indeed, x, the dependence of B on environment variables (shown
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A integerinteger
�

B

action refinement

integerinteger
�

D digits

�

Environment part System part

Fig. 8.9. Example of atomicity refinement

by a dashed line) can be removed, and B can be changed into a private action
of the system part.

Unlike the refinement discussed in the previous subsection, this refinement
cannot be made as a component refinement of the system part. The reason is
that the responsibilities of one component cannot be taken over in a refinement
of another component.

Thinking of A as an action where the user gives an integer to an application
program, D describes the required user actions in an implementation, and B
describes how x is reconstructed and given to the application program on the
system side.

8.4.5 Loosening of Component Synchronization

In the example sketched in the previous subsection it was essential that action
A did not update any environment variables. Otherwise the dependence of B on
environment variables could not have been removed. In general, an interface
action may update variables in all parties involved; an implementation may
therefore need communication in each direction, and refinement of atomicity
then needs loosening of synchronization between the components.

To sketch how this affects the refinement of interface atomicity, consider
a situation where an interface action A models two-way communication be-
tween two components, updating variables x and y in them (see upper part
in Fig. 8.10).

To get rid of synchronized updating of x and y, one of them (say, x)
has to be transformed into a non-primitive state function, as discussed in
Sect. 6.4.3 (p. 186). Therefore, let z be a new variable whose value will ‘almost
always’ agree with that of x. The functions of action A can then be split into
the following more elementary actions (see illustration in the lower part of
Fig. 8.10): action C transmits the required values to component 2, action B is
a refinement of A that updates y accordingly and computes the feedback to
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Fig. 8.10. Loosening of synchronization in two-way communication

be returned by a subsequent execution of action D to component 1, and action
E finally updates z.

For the correctness of such a refinement (of component 1) it is essential that
x has, indeed, become a non-primitive state function that needs no explicit
representation, i.e., that x is used in component 1 only when its value is present
in z. Another aspect that needs additional attention, in general, is that the
enabling of A (and hence also of B) may depend on variables in component 2.
Therefore, the new action C may also be executed in situations where A is not
enabled, and its effects may therefore need to be canceled.

Review Questions

Question 8.4.1 What are the specific goals in interface refinement?

Question 8.4.2 What is the meaning of ‘concealed’ interface variables, and
why are they needed?

Exercises

Exercise 8.4.1 Give a specification where a producer component produces
a sequence of integers to be consumed by a consumer component, and refine
this by component refinement into a form where communication takes place
digit by digit.

8.5 Example: Reliable Channel

We conclude this chapter with an example that illustrates several aspects of
the design method described in this book, including the use of robust compo-
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nent refinements. In this example, a simple buffer is refined in several steps
into a reliable channel, which has a sending end and a receiving end, and
which uses two unreliable channels and an alternating bit protocol for the
communication between them.

8.5.1 Simple Buffer as an Abstract Channel

Let Buf be a layer that specifies a simple finite class Buffer with a local
variable y for storing a data value, with two states Set and Reset to indicate
whether y contains data or not, and with actions Put and Get for putting a
value in y and retrieving it from there:

class Buffer = {y : U; state Set, Reset∗} ,

Put(b : Buffer; x : U) : b.Reset→ b.Set ′

∧ b.y ′ = x ,

Get(b : Buffer; x : U) : b.Set

∧ x = b.y→ b.Reset ′ .

In the following we will use layer Buf for different purposes at various
stages of the design. We will therefore utilize several copies Bufi, i = 1, 2, . . . ,
of this layer, with independent but isomorphic classes Bufferi.

� ∈ � � � � � � �

� � � � � � � � �

�
Put Get

Fig. 8.11. Class
� � � � � � � as an abstraction of a channel

At a high level of abstraction, class Buffer1 in Buf1 can be understood as
an abstraction of the kind of communication system that we intend to specify.
An object c ∈ Buffer1 then models a channel into which single data items
can be put, and from which they can be taken out (see Fig. 8.11).

Since actions Put and Get alternate strictly for each c ∈ Buffer1, this is
a model of reliable channels, which never lose their data. However, since no
fairness requirements are given at this stage, the data need not be taken out
of a channel.

Understanding this as a closed system, both of the actions are considered
to be environment actions. In the absence of system actions, channels are
therefore considered at this level as passive objects that can only store data
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values. All their local variables are interface variables and, more specifically,
we assume them to be concealed, so that no environment refinement is allowed
to add further references to them. This is because the representations of these
variables will be changed so that external read accesses might also interfere
with the goals of the system refinements to be introduced below.

8.5.2 Adding the Two Ends

As the first step towards modeling of concrete channels, the simple buffers
of class Buffer1 are extended into aggregates, where two subobjects model
the sending and receiving ends, respectively. For this purpose, layers Buf1

and Buf2 are imported to layer Channels, where class Buffer1 is renamed as
Channel and extended by

class Channel = {. . . s, r : Buffer2} .

Subclasses Channel.s and Channel.r are assumed to be disjoint, and the
complement set (Buffer2 \ Channel.s) \ Channel.r is assumed to be empty.

� � � ∈ � � � � � � �

� � � � � � � � �

�
�

�

� � � ∈ � � � � � � �

� � � � � � � � �

�
�

�
Put

Transmit

Get

Ack

� ∈ �
� � � � � �

� � � � � � � � � � �
� � �

Fig. 8.12. A channel with two ends

The intuitive idea of this extension is as follows: a refined put action on a
channel object c ∈ Channel puts the value also to buffer c.s in the sending
end, an additional action Transmit then copies it to buffer c.r in the receiving
end, and a refined get action on c ∈ Channel takes the value (also) from
c.r.y. Another additional action Ack is needed to reset c.s. The situation is
illustrated in Fig. 8.12.

The intended invariants for c ∈ Channel are the following:
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�(c.Set ⇒ c.s.Set ∧ c.y = c.s.y) , (8.10)
�(c.s.Reset ⇒ c.Reset) , (8.11)

�(c.r.Set ⇒ c.Set ∧ c.y = c.r.y) , (8.12)
�(c.Reset ⇒ c.r.Reset) . (8.13)

Since the value c.y is needed only in state c.Set, these invariants make c.y

redundant, which is indicated by the braces around it in Fig. 8.12. (States
c.Set and c.Reset will be made redundant at the next level of refinement,
where variables c.s.a and c.r.a will also be added.)

The actions of this layer can now be given as follows:

Put(c : Channel; x : U) : Buf1.Put(c, x)

∧ Buf2.Put(∗c.s, x) ,

Transmit(WFc : Channel; x : U) : Buf1.Stutter

∧ Buf2.Put(∗c.r, x)

∧ c.Set

∧ x = c.s.y ,

Get(c : Channel; x : U) : Buf1.Get(c, x)

∧ Buf2.Get(∗c.r, x) ,

Ack(WFc : Channel) : Buf1.Stutter

∧ Buf2.Get(∗c.s, c.s.y)

∧ c.Reset .

Proving that invariants (8.10)–(8.13) are satisfied by the resulting system
is left to the reader (Exercise 8.5.1). In particular, they guarantee that the
value transmitted in action Transmit is the same as the one in c.y, and that
there is no conflict in getting the same value from both c and c.r in action
Get.

After this refinement, objects c ∈ Channel are no longer purely passive
objects, since the new actions Transmit and Ack are private actions of the
system part. The new variables introduced for the subobjects c.s and c.r are
all interface variables that are also accessed by the refined external interface
actions Put and Get.

The resulting layer Channels is a robust system refinement of Buf1, since
the fairness requirements in Transmit and Ack guarantee that the persistence
conditions on p. 284 are satisfied for the external interface actions Put and
Get. This means that this system refinement is composable with any robust
environment refinement of Buf1, in particular with ones that would add fair-
ness requirements on actions Put and Get.
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8.5.3 Alternating Bits

States c.Set and c.Reset are still needed in layer Channels for distinguish-
ing whether action Transmit or Ack should be executed in otherwise similar
states. The technique of alternating bits is used to make these states redun-
dant.

Layer Channels is therefore imported to layer AB Channels, in which sub-
classes Channel.s and Channel.r are extended with ‘alternating bits’ a,

class Channel.s = {. . . a : B := true} ,

class Channel.r = {. . . a : B := false} ,

with the intended invariant that the state Set/Reset in c follows the corre-
sponding state in either c.s or c.r, depending on whether the values of the
alternating bits are different or the same:

�(c.s.a �= c.r.a ⇒ (c.Set ⇔ c.s.Set)) , (8.14)
�(c.s.a = c.r.a ⇒ (c.Set ⇔ c.r.Set)) . (8.15)

Actions Put and Get are taken as default refinements, and actions Transmit
and Ack are refined as follows:

Transmit(WFc : Channel; x : U) : Channels.Transmit(c, x)

∧ c.s.a = ¬c.r.a→ c.r.a ′ = ¬c.r.a ,

Ack(WFc : Channel) : Channels.Ack(c)

∧ c.s.a = c.r.a→ c.s.a ′ = ¬c.s.a .

Proving that the intended invariants are satisfied is again left for the reader
(Exercise 8.5.1).

With no refinements of interface actions, this is trivially a robust system re-
finement of Channels and also of Buf1. Having made aggregates c ∈ Channel

superfluous as such, the refinement has also effectively partitioned the system
part into two components, the sender part and the receiver part, which con-
sist of objects in Channel.s and Channel.r, respectively. As illustrated in
Fig. 8.12 (p. 293), we choose to assign action Transmit to the former, and
action Ack to the latter.

Writing out all actions of layer AB Channels in full, and simplifying them
on the basis of invariants (8.10) to (8.15), gives us actions

Put(c : Channel; x : U) : c.s.Reset→ c.s.Set ′

∧ c.s.y ′ = x ,
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Transmit(WFc : Channel; x : U) : c.s.Set

∧ c.r.Reset

∧ x = c.s.y

∧ c.s.a = ¬c.r.a→ c.r.Set ′

∧ c.r.y ′ = c.s.y

∧ c.r.a ′ = ¬c.r.a ,

Get(c : Channel; x : U) : c.r.Set

∧ x = c.r.y→ c.r.Reset ′ ,

Ack(WFc : Channel) : c.s.Set

∧ c.r.Reset

∧ c.s.a = c.r.a→ c.s.Reset ′

∧ c.s.a ′ = ¬c.s.a .

Of these, Transmit and Ack are interface actions, which model synchronous
communication between the two system components.

Notice that although states c.Set and c.Reset have become redundant,
their representation depends on both c.s and c.r. It is therefore essential
that the associated interface variable is concealed, so that no environment
refinement can add any further testing of these states, since that would require
synchronized access to both ends of the communication line.

8.5.4 Asynchronous Communication

Layer AB Channels no longer has actions that would modify local variables
in both ends of a channel. However, actions Transmit and Ack, which model
reliable and synchronous communication, still need to access both ends at
the same time. Our ultimate goal in this example is to derive a model of im-
plementing each object c ∈ Channel using two asynchronous and unreliable
communication channels, one for data messages and the other for acknowl-
edgements. First we add such data channels in a robust component refinement
of the sender part.

Since an asynchronous channel can also be modeled as a simple buffer, we
import in the next refinement step another copy Buf3 of layer Buf, and use
class Buffer3 to represent data channels. In other words, objects c ∈ Channel

are extended with a component of class Buffer3, c.dc:

class Channel = {. . . dc : Buffer3} .
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The complement subclass of Channel.dc is assumed to be empty.
The idea of the refinement step is as follows. When in state Set, object c.s

will put its data c.s.y and alternating bit c.s.a in the data channel c.dc by ac-
tion Send, which is a specialization of Buf3.Put for subclass Channel.dc. To
model unreliability, this message may be lost from c.dc by action Lose data,
which is a specialization of Buf3.Get for subclass Channel.dc.9 Because of
this unreliability, action Send has to be executed repeatedly, until an acknowl-
edgement has been received from c.r. If not lost, the message is eventually
received by c.r either by action Transmit or by action Omit data. Of these,
the former is a refinement of AB Channels.Transmit and at the same time
another specialization of Buf3.Get for subclass Channel.dc. The latter is still
another specialization of Buf3.Get for subclass Channel.dc, and it is chosen
if the message has already been received, which can be detected from the
alternating bits.

� � � ∈
� � � � � � �

Send

� � � � ∈
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Transmit

Lose

data

� � � ∈
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Omit

data

Ack

Put

Get

Fig. 8.13. Asynchronous data channel

This leads to the following action refinements and specializations:

Send(WFc : Channel) : AB Channels.Stutter

∧ Buf3.Put(∗c.dc, (c.s.y, c.s.a))

∧ c.s.Set ,

9For simplicity, this action is assumed to model both the disappearance of a
message and the discarding of a corrupted message.
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Lose data(c : Channel) : AB Channels.Stutter

∧ Buf3.Get(∗c.dc, c.dc.y) ,

Transmit(SFc : Channel; x : U) : AB Channels.Transmit(c, x)

∧ Buf3.Get(∗c.dc, (x, ¬c.r.a)) ,

Omit data(WFc : Channel) : AB Channels.Stutter

∧ Buf3.Get(∗c.dc, (x, c.r.a))

∧ c.r.Reset .

External interface actions Ack, Put, and Get are included as their default
refinements, and Fig. 8.13 illustrates the resulting system. A dashed line in-
dicates that object c.s is still a participant in action Transmit. With suitable
invariants it can be shown, however, that this participation can be eliminated,
as will be discussed below.

It is easy to check that this is a refinement, i.e., that the liveness prop-
erties for action Transmit have been preserved. Since robustness conditions
are trivially satisfied, this is also a robust component refinement of the sender
part. As for component structure, it is reasonable to consider that the data
channels form a new component with a local action Lose data, and that ac-
tions Transmit and Omit data are moved to the responsibility of the receiver
part.

Quite symmetrically, we can give a robust component refinement of the
receiver part. Using another copy Buf4 of layer Buf, acknowledgement chan-
nels are then appended to aggregates c ∈ Channel as another component
ac : Buffer4. This gives us the following actions:

Send ack(WFc : Channel) : AB Channels.Stutter

∧ Buf4.Put(∗c.ac, c.r.a)

∧ c.r.Reset ,

Lose ack(c : Channel) : AB Channels.Stutter

∧ Buf4.Get(∗c.ac, c.ac.y) ,

Ack(SFc : Channel) : AB Channels.Ack(c)

∧ Buf4.Get(∗c.ac, c.s.a) ,

Omit ack(WFc : Channel) : AB Channels.Stutter

∧ Buf4.Get(∗c.ac, ¬c.s.a)

∧ c.s.Set .

Figure 8.14 illustrates the final composition, where the two component re-
finements are composed, and the component structure and responsibilities for
actions are changed as suggested above. Since interface actions to the envi-
ronment have not been touched, the resulting system is also a robust system
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Fig. 8.14. Asynchronous implementation of a reliable channel

refinement of the original specification Buf1. The goal of the refinements, i.e.,
distributed implementability, needs, however, further attention.

Distributed implementability of the resulting system requires, of course,
that the participation of c.s and c.r be eliminated from actions Transmit and
Ack, respectively. This simplification of actions requires appropriate safety
properties, which guarantee that the data that are accessed in these partici-
pants can also be obtained from the messages. It is left as an exercise to the
reader to formulate and prove such safety properties (Exercise 8.5.2), and to
simplify the final actions accordingly (Exercise 8.5.3).

Exercises

Exercise 8.5.1 Prove that the intended invariants are, indeed, satisfied in
layers Channels (p. 294) and AB Channels (p. 295).

Exercise 8.5.2 Formulate and prove invariants that capture the intentions
of components c.dc and c.ac in the final component refinements.

Exercise 8.5.3 Write out and simplify the actions of the final layer to show
their distributed implementability.
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Exercise 8.5.4 Give a further refinement of the final layer, with the pur-
pose that c.r would not send acknowledgement messages continually in state
c.r.Reset, but only as a response to receiving a message by either Transmit
or Omit data.

Bibliographic Notes

In state-based approaches, interfaces between components are given in terms
of shared variables. Traditionally, components are understood in the literature
as open systems, which can be specified separately. In composing state-based
open systems one then has to specify how references to external variables are
bound to variables that are local to other components.

An event-based open system, on the other hand, offers named events that
can be synchronized with similar events in other components. This means that
we then have shared events, which are executed jointly by the components
concerned. This is the basic idea in process-algebraic approaches (see e.g. [86,
159, 160, 26]), which provide well-established and mathematically rigorous
means to deal with composition of event-based open systems and with different
kinds of equivalences between them.

In contrast to these approaches to open-system composition, the viewpoint
of this chapter has been that of closed-system partitioning. It is pointed out
that, since open systems have fixed interfaces (i.e., shared variables or shared
events), the closed-system approach is necessary for interface refinement in
the sense discussed here. Although actions in our approach correspond closely
to shared events in event-based systems, each action is always assigned to a
single component.

To some extent, the distinction between open and closed systems is, how-
ever, in the eye of the beholder. Consider process-algebraic specifications, for
instance, where an isolated process is understood as an open system that can
be composed with other processes. From the viewpoint of this book such a
system could also be considered as a closed system, since it can be ‘executed’
by itself, i.e., with a generic environment that is the most nondeterministic
allowed by the specification. Composition with other processes can then be
interpreted as a superposition step where this nondeterminism is reduced.

In connection with LOTOS, the use of these kinds of composition steps
has been called constraint-oriented specification style, since each process then
adds some constraints to the original nondeterminism [26]. Using TLA, a
similar specification style has been promoted by Herrmann and Krumm in
cTLA [81, 82].

The idea of closed-system models is, of course, not new, and has been used
in many areas of engineering. As already mentioned in Chap. 2, it has been
advocated for operational specifications by Zave [195], for instance, and the
idea has also been elaborated in more detail by Feather [54].
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For further TLA-related discussion of interface refinement and of open-
system vs. closed-system modeling, the reader is referred to Lamport’s book
[145], and to his comparative analysis of reasoning on open and closed sys-
tems [142]. Abadi and Lamport have also analyzed how a closed TLA speci-
fication can be ‘opened’ into a conjunction of open-component specifications,
and have derived conditions for independent component refinements in such
‘opened’ systems [8]. In our terminology, their component refinements do not,
however, allow disabling of external interface actions, which is essential for
the methodology introduced here.

The idea of not ‘opening’ a closed system for component refinements seems
to be new in this approach. The special case where no objects are present,
and fairness requirements are therefore associated with entire actions only,
was addressed earlier [125]. The discussion of interface refinement (Sect. 8.4)
has also been adapted from there.

The discussion of design by non-interfering refinements and dealing with
environment errors (Sects. 8.2.4 and 8.2.3) is based on [120]. The serializable
database example, which had been used as a test case for comparing different
specification formalisms [139], also appeared there in more detail. An early
version of the incremental specification of the alternating bit protocol was
given in [92].



Part IV

Distributed and Real-Time Systems



9

Distributed Systems

Reactive systems may be distributed systems, which consist of asynchronously
communicating processes. Although some of the examples have already dealt
with distributed systems, we address them more specifically in this chapter,
and analyze how the action-system approach applies to their specification and
design.

A distributed system consists of several concurrently operating execution
agents, which will be called processes in the following. Processes will be mod-
eled as objects, and actions are thought of as being executed cooperatively by
their participant processes.

To be more specific, it will be assumed in this chapter that there are no
global variables, that each object corresponds to a process, and that these are
finite in number. Consequently, the number of actions in such a distributed
action system – when instantiations for different participant combinations are
considered as different actions – is then also finite. Each of these actions is
also assumed to have a unique identification, by which it can be referred to
in the handshake protocols between the concurrent processes.

The plan for the chapter is as follows:

• Reasoning in TLA is based on an interleaving model, where actions are
executed one at a time. In Sect. 9.1 we analyze how this relates to a more
realistic distributed model, which models true concurrency. Each action
starts in this execution model with a synchronization of the participating
processes, but concurrency is allowed between actions that have disjoint
sets of participants. It is shown that an interleaving model also remains
correct in this case, in the sense that – with a suitable definition of obser-
vations – it gives the temporal properties that can be observed.

• Action systems allow us to model distributed systems at a level where prac-
tical communication mechanisms are ignored. In Sect. 9.2 we demonstrate
how refinement techniques can be used to lower the level of abstraction
in distributed action systems, in order to reflect the possibilities of those
communication primitives that are available in distributed programming.
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• Fairness assumptions in action systems may be unrealistic for direct en-
forcement in distributed implementations. In Sect. 9.3 we therefore an-
alyze such uniform fairness assumptions that are reasonable for uniform
enforcement, even though only very weak assumptions can be made about
the underlying ‘fairness force’ that is available in a truly distributed envi-
ronment.

• Section 9.4 is devoted to a generic problem in distributed systems: how to
coordinate concurrent processes without global synchronizations in situa-
tions where computing proceeds cyclically through a number of stages.

9.1 Interleaved Modeling of Concurrency

A well-known wisdom, attributed to Albert Einstein, is that a theory should
be as simple as possible – but not any simpler. The theory presented in this
book is simplified by being based on a purely sequential execution model:
actions are selected for execution in a strictly sequential order. One may,
however, doubt that this would make the theory too simple for the modeling
of concurrency in distributed systems. These doubts are addressed in this
section.

9.1.1 Theory and Reality

As discussed in Sect. 1.1 (p. 4), any theory is an abstraction of reality. The
right question is not, however, whether a theory is truthful to how the reality
behaves, but whether the results of reasoning in the theory conform to what
we can observe of the reality. This is what we attempt to analyze in this
section.

One should always be careful in distinguishing between a formal model
of reality and the reality itself. In programming the danger for confusion
is especially close, as was briefly discussed in Sect. 1.1.3 (p. 5), since the
same program may be considered either as an abstract, machine-independent
description of some computational phenomena, or as a description of the real
phenomena that are caused by executing the program on a computer.

In order to understand the applicability of the theory presented in this
book we need to take a closer look at some of its fundamental principles,
and at their validity for ‘real computations’. The first step in this direction
is taken in this section by considering a model of distributed systems where
concurrently executing processes may from time to time synchronize with each
other to exchange information. It will be seen that such a more realistic view
of distributed computations does not make the simple theory inapplicable.
In the next section the discussion will be extended to a more basic level of
abstraction, where synchronization is not possible, and all communication
therefore takes place by asynchronous messages.
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9.1.2 Interleaved Computations

Intuitively, time can be understood as a continuum, and physical phenomena
can then be described in terms of continuous functions of time. A different
view of reality is justified in computing, when the physical characteristics of
computing devices are abstracted away.

Discrete Event Sequences

Computational phenomena are usually modeled as sequences of discrete
events, where each event takes place instantaneously. In sequential computing
it is easy to get convinced of the validity of such modeling.

� � � � �
� · · ·

� � � � � � �
�

� � � � � � �
�

time

Fig. 9.1. Sequence of discrete events

Accepting the view that time is continuous in the real world, a sequential
computation can be visualized in terms of distinct events e1, e2, e3, . . . , as
shown in Fig. 9.1, where the direction of time is from left to right. During
each event ei, nothing certain is known about the state of the system, but
at moments t0, t1, t2, . . . between them all state variables can be observed,
which gives us a state sequence s0, s1, s2, . . . . The durations of the events
are finite and non-negative, but otherwise unknown and therefore arbitrary.
Hence, the exact moments ti are also arbitrary with ti ≤ ti+1 for all i ≥ 0.

Modeling events e1, e2, e3, . . . as actions then leads to an abstraction where
TLA is applicable for reasoning on the behaviors 〈s0, s1, s2, . . . 〉 that are pos-
sible in a system.

Interleaving

When several threads of control are present, each of these can be thought
of as a sequence of discrete events. The nondeterministic execution model of
action systems makes it possible to model such computations by interleav-
ing, i.e., so that events in different control threads are interleaved into some
sequential order. Since nondeterminism allows arbitrary interleavings in an
interleaving model, properties that hold for such a model then hold for all
possible interleavings.

Interleaved modeling is obviously unfaithful to the reality of distributed
systems, where no moments ti, i = 0, 1, . . . , would need to exist at which
all processes would be in stable states at the same time. Similarly to the
sequential case, a sequence of local states, s

p
0 , s

p
1 , s

p
2 , . . . , can be seen for each
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process p, but, except for the initial state, there need not be any situations
where one of the combined local states (sp

i , s
q
j ) would exist for two processes

p and q.
For transformational systems (see Sect. 1.2.5, p. 11) interleaved modeling

can, however, be justified by the fact that the final state of a terminating
execution is independent of whether true concurrency is involved or one of
the alternative interleavings is followed. This means that reasoning in terms
of interleaving also gives correct results about the relation between initial and
final states when the reality is not interleaved.

For reactive systems the situation is not as straightforward, since the very
notion of behaviors refers to the global state at some moments ti, i = 0, 1, . . . .
What is the meaning of a global state invariant, for instance, if there are
no moments during execution, when a stable global state would exist? The
situation is even more problematic for fairness properties, as will be seen
below.

9.1.3 Distributed Execution Model

Doubts about the validity of the interleaving model lead us to consider a more
realistic, non-interleaved execution model, which exhibits true concurrency for
distributed action systems. It will then be shown that interleaving can still be
used for reasoning on the temporal properties that can be observed of these
distributed executions.

Distributed Execution of Actions

To illustrate distributed execution of cooperative actions, consider a situation
with three processes p, q, and r. We may then visualize actions A(p, q), B(q, r),
and C(p), for instance, to be executed as shown in Fig. 9.2, where the direction
of time is again from left to right. Initially the processes are in some initial local
states s

p
0 , s

q
0 , sr

0, and each action modifies the local states of its participants
only. Executions of actions are illustrated in the figure by polygons that extend
vertically to the participants that are currently involved in these executions.

More generally, execution starts in some initial state and, whenever all
participants of an action are free and this action is enabled for the combined
local states of these processes, that action may be executed.1 This execution
is independent of what happens to other processes at the same time.

When a process is not engaged in an action, we can think that it may
be communicating with other processes, trying to determine which actions
would be enabled for it.2 Once one or more enabled actions have been found,

1For simplicity we assume here that the guards have no quantified expressions,
which would require communication with other processes also. Getting rid of quan-
tified expressions will be discussed below in Sect. 9.2.6.

2As a special case, an action may have only one participant, in which case its
enabledness can be found without communication with other processes.
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Fig. 9.2. Concurrent execution of actions

one of them may be started by a synchronized ‘handshake’, in which the
participants get committed to the action.3 After that, the participants may
continue communicating with each other, in order to determine how their own
local states should be updated. Finally, when a process has completed its role
in an action, it releases itself from it and becomes ready for the next action.

When not constrained by a fairness scheduler, the selection between en-
abled actions is assumed to be arbitrary. Furthermore, execution need not
obey maximal parallelism. That is, the existence of enabled actions need not
imply that one of them would be immediately chosen. On the contrary, pro-
cesses may wait arbitrarily long for further alternatives to become enabled,
and – since fairness requirements are ignored – there is also the possibility not
to choose any of them.

The reasons for not assuming maximal parallelism in the execution model
are twofold. On one hand, maximal parallelism would mean that the dura-
tions of the participants’ involvement in actions would affect which executions
would be possible. On the other hand, executions that are not possible at one
level of specification might then become possible in later refinements, which
would undermine the very basis of the refinement methodology.

Distributed Fairness Scheduling

In a sequential execution model it is easy to think of a fairness scheduler that
monitors the enabling of fair actions and will eventually enforce their execu-
tion, when needed to avoid unfairness. For concurrently executable actions
such monitoring is not directly possible. To check the enabledness of action
B(q, r), for instance, there must be a moment at which both q and r are not
engaged in any action, but there need not exist any such moments, in general.

Assuming a truly distributed system, we can think that the processes com-
municate with a monitor by asynchronous messages, which transmit informa-
tion about their involvement in actions and about their local states. With no
access to a global clock, and with no assumptions about transmission delays,

3Here we assume a protocol by which the participants of an enabled action can
achieve consensus about executing the action. This problem will be discussed in
more detail in Sect. 9.3.
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the monitor can then establish only a partial ordering of action executions,
as determined by the participants’ involvement in them.4 In the situation of
Fig. 9.2 (p. 309), for instance, messages from p and q would give the infor-
mation that p’s involvement in action A(p, q) preceded action C(p), and q’s
involvement in it preceded action B(q, r). It would not, however, be possible
for the monitor to determine the mutual order between B(q, r) and C(p), or
the relative lengths of different participants’ engagement in any of the actions.

Since it is impossible to monitor real enabling of actions in a distributed
system, we assume a scheduler that monitors one of the possible behaviors that
could have been obtained, had the actions been executed in some complete
order that is consistent with the partial ordering observed. Constraining the
future selection of actions, the scheduler can then control the execution so
that the monitored behavior will turn out fair.

To be more specific, the scheduler could, for instance, keep track of the
number of times that each fair action has been enabled in the monitored be-
havior without being executed. When this number exceeds some limit, the
scheduler could direct the participants of this action to reduce their concur-
rent involvement in other actions so that the enabledness of this action can
be continually checked, and the action can then also be executed when its
enabling is found.

This kind of scheduling may obviously reduce the concurrency in an exe-
cution. In extreme cases a scheduler might then even force the execution to
become purely sequential.

Partial-order Executions

Having given an informal description of distributed executions by action sys-
tems, we now introduce a more precise notion of partial-order executions, in
terms of which the crucial properties of distributed executions can be properly
formulated. Compared to interleaved executions, partial-order executions can
be characterized as follows:

• Instead of global states, partial-order executions deal with local states of
processes. Initially, the combination of all local states has to satisfy the
given initial condition.

• Like interleaved executions, partial-order executions consist of steps that
satisfy actions. However, instead of relating global states to each other,
steps now relate the combined local states of the participant processes
only.

• Instead of a complete ordering of steps we have a partial ordering, which
is determined by the order in which each process is involved in the steps.

4Here we assume conventions that make it possible to recover the order in which
messages from the same process were sent.
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Fig. 9.3. Illustration of a partial-order execution

Figure 9.3 illustrates the partial-order execution that corresponds to the
concurrent execution of actions in Fig. 9.2.

For simplicity we will assume in the following that the correspondence
between steps and actions is unique in the sense that the identity of actions
will not play any essential role in partial-order executions.

It should also be pointed out that the term ‘behavior’ is still used in its
old meaning, and that no logical language will be introduced for expressing
directly the properties of partial-order executions.

9.1.4 Fairness Paradox

For a given distributed execution, the particular behavior that can be mon-
itored by a fairness scheduler is not uniquely determined. Suppose now that
another process is also trying to check the fairness of a distributed execution
in the same manner. Since this process may receive asynchronous messages
in another order, there is no way to guarantee that it could keep track of the
same behavior as the scheduler. The problem with this is that one of these
orderings might be fair, while the other is unfair.

This dilemma in judging whether a distributed execution is fair or not is
called the fairness paradox.

Example

To illustrate the problem, consider the following situation. There are two
processes p and q that belong to class P with a local Boolean variable b,
which is initialized as false, and there are two actions: A(x : P), which is
always enabled and which complements the value of x.b, and B(x, y : P),
whose enabling guard is x.b = y.b = true.

Consider now the concurrent execution of actions illustrated in Fig. 9.4,
where both A(p) and A(q) are executed infinitely often, but B(p, q) is not
executed at all. The question is whether this execution should be judged fair
with respect to action B(p, q) or not.

Independently of the durations of actions, this execution corresponds to
the partial-order execution illustrated in Fig. 9.5, where processes p and q

are never synchronized. The possible behaviors that are consistent with this
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Fig. 9.4. Concurrent execution with no synchronizations
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Fig. 9.5. Partial-order execution corresponding to Fig. 9.4
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Fig. 9.6. State diagram for behaviors associated with Fig. 9.5

partial-order execution can be described in terms of the state-transition dia-
gram in Fig. 9.6, where states si stand for the four different combinations
of values of p.b and q.b. State s0 is the initial state (p.b = q.b = false),
and action B(p, q) is enabled only in state s3 (p.b = q.b = true). Obviously,
if one follows the behavior σ = 〈s0, s1, s3, s2, s0, s1, s3, s2, . . . 〉, for instance,
the execution would be judged unfair with respect to B(p, q), since state s3

is visited infinitely often. Another possibility would, however, be behavior
τ = 〈s0, s1, s0, s2, s0, s1, s0, s2, . . . 〉, which does not visit state s3 at all, and
would therefore lead to the opposite conclusion.

Equivalence Robustness

A behavior is said to conform to a partial-order execution if it is consistent
with the partial ordering determined by the execution. Given a distributed
system, each execution then determines an equivalence class of those behaviors
that conform to the associated partial-order execution. In the above example,
behaviors σ and τ obviously belong to the same equivalence class, since they
both conform to the partial-order execution in Fig. 9.5. Since this equiva-
lence of σ and τ depends crucially on action participants, it depends on such
properties of action systems that fall outside of their TLA meanings.
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A property Φ of behaviors is said to be equivalence robust (for a given
distributed system) if the behaviors of the same equivalence class either all
satisfy Φ or all satisfy ¬Φ. It is easy to see that all safety properties that
hold for (all behaviors in) an interleaving model of a distributed system are
equivalence robust. The fairness paradox means that the same is not true for
fairness properties, as was demonstrated above.

The fairness paradox seems to lead to a contradiction, since two observers
of a distributed execution may base their observations on different behaviors
of the same equivalence class, and may therefore be led to different conclusions
about the satisfaction of a property. This dilemma has cast some doubts on
whether the fairness properties of an interleaving model are at all applicable
to distributed systems. In the following we will analyze this question in more
detail.

Note on Robust Relaxation of Properties

The quest for equivalence robustness might tempt us to use such relaxed
properties that are guaranteed to be equivalence robust. Intuitively, it might
seem natural to do this by accepting a property Φ to be satisfied for a behavior
if at least one of the behaviors in the same equivalence class satisfies Φ. After
all, since an observer cannot have precise information about how a distributed
execution has, in fact, proceeded, he/she could as well adopt the view which
gives the most ‘optimistic’ results.5

For any property Φ of behaviors, let Φ+ therefore denote the robust re-
laxation of Φ defined for a given distributed system as follows: behavior σ

satisfies Φ+ if and only if there is a behavior τ that satisfies Φ and is equiv-
alent to σ. Obviously, the robust relaxation of any property is equivalence
robust.

This idea is not, however, useful for our purposes, since it would make
it impossible to use the specification and design methods introduced in this
book. To see this, consider a distributed system for which a relaxed state in-
variant (�P)+ can be proved. The problem is that, when a refinement reduces
nondeterminism, it may exclude the possibility for those behaviors that sat-
isfy �P, and (�P)+ would therefore no longer hold for the refined system (see
Exercise 9.1.4).

9.1.5 Observations

For physical systems, observations are used to judge whether a theoretical
model is acceptable or not. An observation supports a model if such properties
are observed that agree with the model, and it refutes a model if a property

5Notice the analogy to serializable transactions in database theory, where trans-
actions are serializable if and only if there is at least one sequential order in which
they could have taken place with the same observable effects.
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is observed that is in conflict with the model. A model can now be said to be
correct if the following conditions hold:

• The model is supported by observations, i.e., it is possible to observe those
properties that are present in the model.

• The model cannot be refuted by observations, i.e., one cannot observe
properties that are in conflict with those in the model.

The notion of observations can also be applied in connection with formally
defined systems. In our case, observations would model arrangements by which
observations could be made at the implementation level.

Since the properties that are present in an interleaving model do not need
to exist in distributed executions, the critical question is, what is meant by
observing such properties. At first sight, the idea of a distributed fairness
scheduler would seem to be based on observations. However, taking arbitrarily
one of the equivalent behaviors that could have appeared, if no concurrency
would have been present, can hardly be taken as observational evidence of
all properties exhibited by this particular behavior. This is why we need to
reconsider the notion of observations of distributed executions.

Observations of Distributed Executions

It seems reasonable to require that an observation of a distributed execution
can observe only those combined local states that are actually realized in
the handshakes for actions. Similarly, it seems reasonable to require that a
more exact ordering of these partial states cannot be observed than what is
determined by the partial ordering of action executions. How can it then be
possible to observe arbitrary TLA properties?

Arrangements that make an observation possible in a closed system are
always part of the total system, although they should not interfere with the
observed phenomena more than what is necessary for making the observations.
Combined local states that do not otherwise get realized can be observed by
arrangements where additional participants are joined into actions, or aux-
iliary stuttering actions are added for some combinations of participants, in
order to get them synchronized. Arrangements of this kind can be expressed
by superposition that does not affect action guards or bodies, and therefore
will not unduly interfere with the system observed. Partial-order executions
in the systems obtained with this kind of superposition will be called obser-
vations.

The situation is, in fact, somewhat analogous to quantum-mechanical ob-
servations. The exact location of a particle, for instance, is not uniquely de-
fined in quantum physics, except when an observation is made of it, which
forces one of the possible locations to be realized. Similarly, an observation
of a distributed system may force the global state to get realized, even if it
would not otherwise appear in a distributed computation.
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To be more precise, an observation ω of an individual concurrent execution
is based on a partial order of local states, as determined by the observed system
(with its fairness scheduler), together with those additional synchronizations
that have been imposed on it by the observer. Let Σω denote the set of
behaviors that conform to this partial order. It is then reasonable to define
that a property Φ has been observed in the particular concurrent execution
if Φ is satisfied by all behaviors σ ∈ Σω.

As an extreme case, an observation may be complete in the sense that
the complete global state gets realized between all actions. For a complete
observation ω, the set Σω then consists of a single behavior, which makes it
possible to observe any property Φ or its negation ¬Φ.

9.1.6 Correctness of the Interleaving Model

With the above notion of observations, a fairness scheduler does not make
an observation of the fairness properties that it is intended to enforce when
it controls a system by monitoring a hypothetical behavior σ. By controlling
the system in which all other possible observers are also included, it makes,
however, all unfair observations impossible.

To show this, suppose that an observation ω observes a property that is
in conflict with a fairness requirement F that a fairness scheduler is supposed
to enforce. By definition, all behaviors in Σω must then be in conflict with F.
Since the fairness scheduler monitors the execution as affected by all observers,
the behavior σ monitored by it must also belong to Σω. Since σ satisfies F by
construction, we have a contradiction that proves our claim.

This allows us to conclude that the interleaving model is also a correct
model for distributed systems.

Review Questions

Question 9.1.1 What is the reason for the desire to keep the interleaving
model also for distributed computations?

Question 9.1.2 Why is maximal parallelism inappropriate for an execution
model for specifications?

Question 9.1.3 How does a fairness scheduler judge the fairness of dis-
tributed executions?

Question 9.1.4 What is meant by the fairness paradox, and why is it rele-
vant for the correctness of the interleaving model?

Question 9.1.5 What is meant by equivalence robustness? Which properties
are guaranteed to be equivalence robust in an interleaving model?
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Question 9.1.6 Why can we not use robust relaxations of properties?

Question 9.1.7 What do we mean by an observation of a distributed sys-
tem?

Question 9.1.8 Why is the interleaving model justified to be correct for
distributed computations?

Exercises

Exercise 9.1.1 Give an example of a situation where a fairness scheduler
may temporarily need to disallow maximal parallelism.

Exercise 9.1.2 Give a state invariant �P that is not satisfied by the system
discussed in Sect. 9.1.4 (p. 311), but the corresponding relaxed property (�P)+

is satisfied.

Exercise 9.1.3 Show that (�P)+ ∧ (�Q)+ does not imply (�(P ∧ Q))+.

Exercise 9.1.4 Give an example where a refinement invalidates the robust
relaxation of a state invariant (�P)+.

Exercise 9.1.5 Consider the situation that the distributed system discussed
in Sect. 9.1.4 (p. 311) has another action C(x, y : P) with enabling guard
x.b = y.b = false. Is it now possible for a fairness scheduler to judge the
execution illustrated in Fig. 9.4 (p. 312) to be fair with respect to both B(p, q)
and C(p, q)?

9.2 Modeling of Practical Mechanisms

Synchronizations are themselves an abstraction for which no primitive mecha-
nisms are directly available for the processes in a distributed system. Basically,
distributed computations have to be implemented as asynchronous computa-
tions, where only an asynchronous message passing mechanism is available for
process communication. Programming environments may, however, offer some
higher-level mechanisms that have been built on top of this basic facility.

In this section we investigate transformations by which an action system
can be refined into a form that reflects the possibilities that are available
in programming environments. Discussion of the implementation of fairness
requirements will be postponed to the next section.
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9.2.1 Refinements vs. High-level Mechanisms

In principle, there are two extreme alternatives in implementing a system that
has been defined in terms of high-level concepts. One is to use the definition as
a specification that needs to be tailored by refinement techniques into an im-
plementable form. The other is to construct a general-purpose implementation
of the high-level mechanisms that have been used. In general, a compromise
is desirable, where the two ideas are combined in a balanced manner.

With the generality of distributed action systems it is obvious that no
general-purpose implementation can totally remove the need for refinement
techniques. For a general-purpose mechanism it may also be impossible to
achieve the efficiency that would be possible for a more refined system. On
the other hand, an implementation of a general multi-process synchronization
mechanism could remove the need for repeatedly occurring standard refine-
ments.

In each case, transformation into asynchronous computations can always
be expressed as refinement by superposition. The difference is whether the
superposition steps are given explicitly as part of system specification and
design, or implicitly as part of the implementation of a general-purpose mech-
anism.

9.2.2 Decentralized Evaluation of Guards

An action system will be called centralized if its object structure reflects the
processes in a distributed implementation, but the actions do not obey the
constraints imposed by the interaction and communication mechanisms that
are available in the intended implementation environment. Imposing such con-
straints by suitable transformations will be called decentralization.

An intuitively natural goal in decentralization is that each process be able
to evaluate its own readiness to participate in actions independently of other
processes. Next we introduce some concepts that are useful in analyzing how
this requirement can be met.

Non-participant Parameters

Concerning non-participant parameters, direct implementability of an action
requires that each of these can be interpreted as output from one of the
participants to the others. This means that each such parameter be assigned
to one of the participants, and that the value of the parameter be uniquely
determined by the local variables of that participant. In other words, each non-
participant parameter should be understood as a shorthand for an expression
that involves local variables of a single participant only.

In the rest of this chapter we will always assume this to be the case.
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Local, Shared, and Global Guard Expressions

An expression in a guard is said to be local to a participant if it depends, in
addition to local variables of that process, only on the identities of the other
participants (see Sect. 5.3.1, p. 136).

An expression that depends on the local variables of several participants
is said to be shared. Shared expressions can be evaluated jointly by the par-
ticipants in question.

When not local or shared, an expression in a guard is said to be global. In
the absence of global variables, global expressions are made possible only by
quantification.

For instance, if an action has participant roles p and q, guard expression

p.next = q.id

is local to p, since it refers only to the identity of q, expressions

p.x > q.x ,

f(p) ∧ (g(p) ∨ h(q))

are shared by p and q, and

∀r ∈ P : r.x ≥ p.x

is global.

Separable Guards

The guard of an action is said to be separable if it contains no global expres-
sions, and each atomic logical expression in it is local to a single participant.

In the above example, f(p) ∧ (g(p) ∨ h(q)) would be a separable guard,
whereas p.x > q.x would not.

By transformation into a disjunctive form, a separable guard of an action
with n participants can always be put into the disjunctive form

(p11 ∧ · · · ∧ p1n) ∨ · · · ∨ (pk1 ∧ · · · ∧ pkn) ,

where each atomic expression pij is local to participant j. An action with
a separable guard can therefore be implemented as a collection of actions
with identical bodies, one action for each disjunct in the disjunctive form
of the guard. For instance, an action with guard f(p) ∧ (g(p) ∨ h(q)) can
be implemented as two actions with guards f(p) ∧ g(p) and f(p) ∧ h(q),
respectively.

When this transformation is used in a situation where the original action
has fairness markings, the associated liveness properties are preserved if each
of the new actions is given the corresponding fairness markings. The result-
ing liveness properties may, however, then be stronger than those originally
required.
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9.2.3 Modeling of Implementations

To be able to transform an action system into a form that can be imple-
mented in a distributed fashion, we also need to understand how distributed
implementations can be modeled as action systems.

Atomic Actions in Concurrent Processes

As already discussed in Chap. 2, atomicity of actions means that, once started,
an action will eventually be completed without any interference from outside
of the action itself.

Within each process in a distributed system, any deterministic, terminat-
ing, and non-communicating piece of code can be understood as a private
action that has only one participant. A potentially non-terminating loop, on
the other hand, can be understood as a repeatedly executed private action,
with the loop condition as part of its guard.

A communication event can be understood to start a new atomic action. If
nondeterminism is involved in the selection between several alternative com-
munication events, each of these alternatives will then start a different atomic
action.

For instance, in the select statement of Ada, a process may be prepared
for several different communication events at the same time, in which case
each of these would start a different atomic action (see process ACTIONS
in Table 2.2, p. 51). Still another alternative action could in this kind of a
situation be a private action that corresponds to a timeout event, and which
can be selected if no communication event has taken place within a specified
deadline.

Classification of Communication Mechanisms

A mechanism for process communication is an interaction mechanism if it
allows immediate feedback from other participants within the same atomic
action. Using an interaction mechanism, an atomic action can update the
local states of the participating processes on the basis of the local states of
the other participants.

Ada rendezvous and the interaction mechanism in CSP-like languages, like
Occam, are examples of two-process interaction mechanisms, which will be
discussed in more detail below.

Communication mechanisms where the roles of sender and receiver pro-
cesses are clearly separated from each other are message passing mechanisms.
This separation of roles means that the sender cannot get any feedback from
the receiver(s) within the same action.6

6The enabling of a message passing event may depend on the state(s) of the
receiver(s), which then provides a primitive form of feedback, but, once such an event
takes place, the sender’s state is updated independently of the receivers’ states.



320 9 Distributed Systems

A message passing mechanism is synchronous or asynchronous depending
on whether the sending and receiving of a message takes place in a single
atomic event or not.7

As has already been mentioned, asynchronous message passing is a basic
mechanism on which other mechanisms can be implemented. Synchronous
message passing can be considered as the simplest abstraction that provides
a primitive form of synchronization between processes.

Somewhat different communication paradigms are offered by shared mem-
ory and remote procedure calls. In this context they can, however, be consid-
ered as variations of an asynchronous message passing mechanism, which will
be discussed in more detail below.

Two-process Interaction Mechanisms

The rendezvous or entry mechanism in Ada (see the example discussed in
Sect. 2.4.2, p. 49) is a two-process interaction mechanism. As illustrated in
Fig. 9.7, one of the two processes acts as a ‘caller’ that may invoke an accept
statement within the code of a ‘callee’ process. This invocation is similar to a
procedure call – except that the callee must be prepared to accept the call –
and parameters may also be associated with it. After the callee has executed
this accept statement, return parameters may be transmitted to the caller,
and both processes will then proceed concurrently according to their own
control threads.

control thread
of caller process

entry call

control thread
of callee process

accept
statement

atomic action

rendezvous

Fig. 9.7. Ada rendezvous as a two-process action

7Notice that the words ‘asynchronous’ and ‘synchronous’ are multiply overloaded
in information technology. In this context they have nothing to do with whether the
actual transmission lines are synchronous or asynchronous in the sense that these
words are used in telecommunications literature, or with the synchrony hypothesis
discussed in Sect. 1.2.5 (p. 11).
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Considering rendezvous as an atomic action, the guard of the action re-
quires that both processes are prepared for the rendezvous. That is, the control
threads of both processes have proceeded to a place where the rendezvous can
take place, and the local guarding condition, which is possible in Ada only on
the callee’s side, is true.

With the assumption that an accept statement contains no further entry
calls, and that its execution will always be completed successfully, the body of
the action can be understood to consist of the accept statement itself, and ar-
bitrary (deterministic, terminating, and non-communicating) subsequent code
within both processes. In addition, if the rendezvous starts a sequence of inter-
action events between the same pair of processes, these may also be included
in the same action.

Instead of a symmetric way to access the local states of the two processes,
as in action systems, only the state of the callee is directly visible within an
accept statement. The relevant local variables in the caller’s state have to be
made accessible through parameters that are given in the entry call. Feedback
from the accept statement to the callee can also take place through the return
parameters of the entry call.

The Ada rendezvous mechanism is asymmetric with respect to the two
participants, requiring that the caller can be prepared for at most one ren-
dezvous (and possibly also a private timeout action) at a time, whereas the
callee may have several concurrently enabled accept alternatives in a select
statement (see example in Table 2.2, p. 51).

control thread
of process 1

send/receive

...

control thread
of process 2

send/receive

...

send/receive send/receive

control thread
of process 3

atomic action

Fig. 9.8. CSP-like communication and atomic actions
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In a similar manner, various CSP-like languages allow synchronous inter-
action by events in which messages can be sent in both directions. Such an
event and its immediate consequences in both processes, including possible
continued communication between the two processes, can be considered to
constitute a single atomic action as outlined in Fig. 9.8.

In principle, the CSP mechanism is more symmetric than Ada rendezvous.
However, to avoid complex handshake procedures between processes, it may
be required that one of the partners is designated as the ‘active’ partner (or
caller), which is allowed to be ready for at most one interaction at a time,
while the ‘passive’ partner (callee) may have several alternatives.

Notice that languages like Ada and CSP do not provide any explicit sup-
port for the notion of actions. For instance, no syntactic correspondence exists
between entry calls and the matching accept statements in Ada, or between
the interaction points in CSP processes. Instead, the same entry call (or inter-
action point in an active partner) may give rise to different actions, depending
on the accept statement (or interaction point in the passive partner) that will
respond to it.

As for fairness issues, programming languages usually do not guarantee
any kind of fairness in the nondeterministic selection between different alter-
natives.

Message Passing

Synchronous message passing mechanisms allow a sender process to update a
receiver’s local state by a data value (message). The receiver is then needed
as a participant in the action, but it is a ‘passive’ participant that may only
affect the enabling of the action. That is, synchronous message passing requires
synchronization between the communicating processes, but allows no feedback
from the receiver.

Synchronous message passing may also allow broadcast communication
with one sender and multiple receivers in one action. This is an exception
to having only two-process actions at an implementation level.

Asynchronous message passing mechanisms have the additional restriction
that explicit joint actions between sender and receiver processes are not pos-
sible. Instead, a communication event needs an intermediate auxiliary partic-
ipant – a channel or a message buffer – to which a sender first gives a message
(as in synchronous communication), and which then transmits the message to
a receiver (or multiple receivers) in a separate event (or events).

Additional characteristics may be associated with the auxiliary partici-
pants in asynchronous message passing. These may have bounded capacity for
storing undelivered messages. They may be unreliable, in which case messages
may be lost or corrupted. Also, they need not be order-preserving, that is,
messages need not be delivered in the same order in which they were sent.
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Other Communication Mechanisms

Communication through shared memory is similar to asynchronous message
passing in the sense that a shared memory behaves as an intermediary between
senders and receivers. It offers, however, flexible possibilities to build power-
ful higher-level communication mechanisms. A well-known example of this is
the Linda approach, where versatile possibilities are provided for storing and
retrieving tuples in a shared memory.

Remote procedure call mechanisms can be understood as conventions by
which processes can use asynchronous message passing to invoke procedures
in each other, and to receive the associated return values.

The notion of multi-process actions has also given rise to proposals for
higher-level mechanisms that support multi-process interactions directly, by
using general handshake algorithms for multi-process synchronization.

Various fairness notions have also been studied that can be supported in
connection with multi-process interactions. The basic idea then is that all
processes are provided with a uniform view of the sequence of events in the
system. That is, one ensures that they can all monitor the same behavior that
conforms to the distributed computation in question, and that they cooperate
in making this behavior fair.

9.2.4 Constraints for Implementable Actions

To sum up, direct implementability of actions (in terms of the available com-
munication mechanisms) imposes constraints of the following kinds:

• Usually only two-process communication is supported in programming lan-
guages for distributed systems. To reflect this, actions cannot have more
than two participants.

• Processor topology may impose restrictions on the processes that can di-
rectly communicate with each other. This means that it need not be pos-
sible for all pairs of processes to have joint actions with each other.

• The guards of two-participant interactions need to be conjunctions of local
expressions, which can be evaluated separately by the participants. To
allow direct transformation into this form, the guards of actions must be
separable.

• Asymmetry in interaction mechanisms may impose restrictions on the set
of actions for which a process can be ready at the same time.

• In message passing mechanisms, receiver processes are passive participants
that cannot affect the updating of the sender’s local state. This causes
asymmetry in what can be done in action bodies.

• Asynchronous message passing requires the introduction of auxiliary inter-
mediate participants (asynchronous channels, message buffers, or shared
memory), which are only passive participants in actions.
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9.2.5 Example: Distributed Exchange Sort

The simple example of distributed sorting, which was already discussed in
Sect. 5.6.5 (p. 156), will be used in the following to illustrate various trans-
formations that can be used for the decentralization of actions.

� � � � · · · � �
� � � � � � � � � � � �

root of
� � � � leaf of

� � � �

· · ·

Fig. 9.9. Processes and communication actions in distributed exchange sort

To repeat the problem, we have n processes p ∈ P, |P| = n ≥ 1, each with
one number p.x. The processes have been arranged as a sequence, where each
p can communicate directly only with its immediate neighbors as visualized
in Fig. 9.9. The neighbor relation Next will now be represented in terms of
local attributes p.next and p.prev in the processes, so that

p·Next·q ⇔ p.next = q.id ∧ q.prev = p.id ,

and p.prev = q.next = none for the root p and the leaf q of Next. For
simplicity, predicates p.root and p.leaf will be used as shorthand for p.prev =
none and p.next = none, respectively.

The purpose of the actions is to sort the numbers into an ascending order so
that p.next = q.id implies p.x ≤ q.x. As was already discussed in Sect. 5.6.5
(p. 156), this can be done by action

WFExchange(p, q : P) : p.next = q.id

∧ p.x > q.x→ p.x ′ = min(p.x, q.x)

∧ q.x ′ = max(p.x, q.x) .

An additional action that would use the final number p.x in process p for
some purpose could have a global condition

∀q ∈ P : (q·Next+·p ⇒ q.x ≤ p.x) ∧ (p·Next+·q ⇒ p.x ≤ q.x) (9.1)

in its guard. As such this would, however, require p to communicate with all
other processes q ∈ P.

The initial layer with the above action Exchange will be denoted by Sort.
It is pointed out that our aim in the following refinements of this layer is
only to demonstrate various kinds of transformations, not to derive optimal
solutions for the distributed sorting problem.
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9.2.6 Getting Rid of Global Guards

In high-level specifications it is often convenient to use global guards. A dis-
tributed implementation then requires transformation into a form with only
shared or local guard expressions.

Consider the situation that an action A(p : P) has a global guard g. Su-
perposition can then be used for introducing a local condition p.h with an
intended invariant

�(p.h ⇒ g) .

Strengthening the guard g into p.h would obviously make it local, and would
also preserve all safety properties. Preservation of liveness properties would
need to be proved in the usual manner.

Example

As an example, consider the global expression (9.1), expressing that process
p in the sorting example already has its final number.

The form of this expression suggests using local variables p.max left and
p.min right to indicate the ‘knowledge’ of process p about the largest number
to its left, and the smallest number to its right, respectively. Special values
‘�’ and ‘⊥’ can be used to indicate the lack of such knowledge, with the idea
that ‘�’ (‘⊥’) is in arithmetic comparisons larger (smaller) than any other
value.

More precisely, the intended invariants can then be given as

�(p.root ⇒ p.max left = ⊥) ,

�(¬p.root ⇒ p.max left = � ∨ p.max left = max
q·Next+·p

(q.x)) ,

�(p.leaf ⇒ p.min right = �) ,

�(¬p.leaf ⇒ p.min right = ⊥ ∨ p.min right = min
p·Next+·q

(q.x)) .

These invariants can be imposed initially by setting p.max left as ‘⊥’ or
‘�’, depending on whether p is the leftmost process or not, and correspond-
ingly p.min right as ‘�’ or ‘⊥’, depending on whether p is the rightmost
process or not.

During a computation these invariants can be maintained, and the ‘knowl-
edge’ expressed by them can be increased by refining action Exchange into

WFExchange(p, q : P) : Sort.Exchange(p, q)→ if q.min right �= ⊥ then
p.min right ′ = min(p.x, q.min right)

∧ if p.max left �= � then
q.max left ′ = max(q.x, p.max left) .
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In addition, we have to ensure that this ‘knowledge’ will eventually be
spread out to all processes. Intuitively this means that each process that
already has such knowledge is required to make sure that its neighbors will
also get it. This can be achieved, for instance, by the following new actions:

WFSpread right(p, q : P) : Sort.Stutter

∧ p.next = q.id

∧ p.max left �= �
∧ q.max left = �→ q.max left ′ = max(p.x, p.max left) ,

WFSpread left(p, q : P) : Sort.Stutter

∧ p.next = q.id

∧ p.min right = ⊥
∧ q.min right �= ⊥→ p.min right ′ = min(q.x, q.min right) .

With the given fairness requirements, the ‘knowledge’ expressed by the
local variables p.max left and p.min right will eventually be maximized,
and the local expression

p.max left ≤ p.x ≤ p.min right (9.2)

will then imply the global expression (9.1).
Obviously, the solution so obtained could be streamlined, for instance, by

combining actions Spread right and Spread left.

9.2.7 Dealing with Non-separable Guards

Because of the condition p.x > q.x, the guard of action Sort.Exchange is
not separable.8 Separability can be imposed, however, by moving this non-
separable condition to be evaluated in the body, and letting the body do a
stuttering execution, if this is not true.

In general, given an action A with a guard g that consists of a separable
part gs and a non-separable part gn, i.e., g = gs ∧ gn, this modification can
be expressed as a stuttering relaxation of A (see Sect. 6.4.4, p. 187) that allows
stuttering under the condition gs ∧ ¬gn. As discussed in Sect. 6.4.4, if there
are fairness requirements on A, this modification gives proof obligations for
their preservation.

8Notice, however, that for a finite range of numbers
� � � � � � � could also be

made separable. For the range � �
�

�
� � �

, for instance, it could be expressed as
� � � � ≥� � � � �

�

� � � � � � �
� � � � � � ≤ � � .



9.2 Modeling of Practical Mechanisms 327

Example

In the distributed sorting example the separable (in this case even local) and
non-separable parts of the guard are

gs(p, q) ⇔ p.next = q.id ,

gn(p, q) ⇔ p.x > q.x ,

and the stuttering relaxation of action Sort.Exchange is after straightforward
simplification as follows:

Order(WFp, q : P) : p.next = q.id→ p.x ′ = min(p.x, q.x)

∧ q.x ′ = max(p.x, q.x) .

Obviously, without the given change in the fairness marking, sorting would
not need to be completed. With this stronger fairness requirement, preserva-
tion of liveness properties can be shown using the safety property that the
non-separable condition gn(p, q) can be turned from true to false only by this
action itself,

stable gn(p, q) unless 〈Order(p, q)〉 .

With a separable guard the action has now become implementable with
CSP-like communication mechanisms, for instance.

A layer where sorting is accomplished with this Order action will be de-
noted by Sort1 in the following.

9.2.8 Imposing a Policy

In general, a nondeterministic model allows a large number of executions,
many of which may be inefficient, either for a given implementation environ-
ment or by any reasonable metrics.

For instance, the technique that was described for making guards separable
introduces additional stuttering executions of actions. Theoretically, fairness
requirements can still guarantee that these cause no harm, but a direct im-
plementation might involve a lot of unnecessary communication.

By a policy we mean here constraints by which nondeterminism is de-
creased for efficiency reasons. Such policies can be imposed by superposition.
For instance, stuttering executions of an action can often be avoided by in-
troducing new variables with suitable invariants.

Example

As an example, consider action Sort1.Order, which is always enabled for two
neighboring processes – until possibly permanently disabled by an additional



328 9 Distributed Systems

global condition that could be superposed on it – and can therefore cause a
lot of unnecessary communication.

With some ‘knowledge’ about each other’s numbers, some unnecessary
stuttering executions can be avoided. Such information can be maintained
by remembering the numbers that the neighbors had in previous exchange
actions. For this purpose we can introduce additional variables p.x left and
p.x right with the intended invariant

p.next = q.id ∧ p.x > q.x ⇒ p.x > p.x right ∨ q.x < q.x left .

With ‘�’ and ‘⊥’ as above, the invariant can be enforced by initializing
p.x left and p.x right as ‘�’ and ‘⊥’, respectively, and augmenting the body
of Sort1.Order with ‘assignments’

∧ p.x right ′ = max(p.x, q.x)

∧ q.x left ′ = min(p.x, q.x) .

Strengthening the guard with conjunct

p.x > p.x right ∨ q.x < q.x left

will then remove only stuttering executions.

9.2.9 Asymmetry in Invoking Actions

As discussed in Sect. 9.2.4 (p. 323), an asymmetric interaction mechanism
may have the restriction that an active partner can be ready for at most one
interaction at a time.

Such asymmetry can be enforced in joint actions by designating the active
partner for each two-process action, and constraining nondeterminism so that
no other actions are enabled for a process for which some action with active
partnership is enabled. Notice that the active partner need not be statically
determined, but may also depend on the current state.

Example

Suppose that an active partner in exchange actions may be ready to commu-
nicate in only one direction at a time. If no exchange of numbers is needed
in that direction, the direction can be changed only if the action permits
stuttering.

Let the direction in which a process is ready to communicate be indicated
by the local states

state Look left, Look right .

The desired effect is then obtained by refining action Sort1.Order as follows:
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Order(WFp, q : P) : Sort1.Order(p, q)

∧ p.Look right

∧ q.Look left→ if ¬p.root then p.Look left ′

∧ if ¬q.leaf then q.Look right ′ .

It is easy to see that the liveness properties of the system are preserved
if the leftmost process is initialized to look to the right, and the rightmost
process is initialized to look to the left.

Since at most one interaction is now enabled for any process p ∈ P, much
freedom is left for designating the active partner in the above action Order.
For instance, it could always be the left partner p, or it could also be the
odd-numbered process in the sequence.

There is one problem, however, to be noticed. By having also added state
changes to stuttering executions of action Sort1.Order, these executions no
longer stutter. The above fairness requirement therefore disallows permanent
disabling of the action even when the sorting has been finished. This could
be avoided by giving a stronger guard, where an additional conjunct remains
true at least as long as the numbers have not been sorted, but will eventually
turn false.

9.2.10 Decoupling of Effects

Message passing mechanisms do not permit events where the state change in
the sender would depend on the state of the receiver. Therefore, such effects in
the two partners of an action may need to be decoupled into separate actions.

Example

Consider action Sort1.Order, where the state changes in the participants
depend on both of them.

To decouple the effects in the two participants we can think of splitting
the action into three parts:

• Send, where one of the participants sends a message about its number x

to its partner,
• React, where the partner changes its number x, if necessary, and returns

a message with its old number x to the first participant, and
• Complete, where the first participant changes its number x, if necessary.

For simplicity, we can always think of the left participant to be the initiator
that starts this sequence of actions.

Unfortunately, no refinement can possibly decouple the changes in p.x and
q.x into different actions. We can, however, use the technique introduced in
Sect. 6.4.3 (p. 186) for refinement of atomicity. That is, we can mimic p.x by
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a new variable p.y, which is initialized with the same value and will ‘almost
always’ agree with p.x.

Let class P therefore be extended into

class P = {. . . y : U; state Passive∗, Active; from left, from right : U(⊥)} ,

where y is the new variable to be used instead of x, states Active and Passive

indicate whether the process has initiated communication with its right neigh-
bor or not, and from left and from right are for storing messages from the
two neighbors.

Actions for this superposition step can now be given as follows:

Send(WFp, q : P) : Sort1.Stutter

∧ p.next = q.id

∧ p.Passive

∧ p.from left = ⊥→ q.from left ′ = p.y

∧ p.Active ′ ,

React(WFp, q : P) : Sort1.Order(p, q)

∧ q.Passive

∧ q.from left �= ⊥→ q.y ′ = max(q.y, q.from left)

∧ p.from right ′ = min(q.y, q.from left)

∧ q.from left ′ = ⊥ ,

Complete(WFp) : Sort1.Stutter

∧ p.Active

∧ p.from right �= ⊥→ p.y ′ = p.from right

∧ p.from right ′ = ⊥
∧ p.Passive ′ .

One of the intended invariants for this step is

�(p.x = (if p.from right = ⊥ then p.y else p.from right)) . (9.3)

It expresses the purpose of the transformation, which is to change variables p.x

into non-primitive state functions that are not needed in an implementation,
since their values can always be obtained from other variables, i.e., from p.y

and p.from right. Checking that (9.3) is, indeed, satisfied is left to the reader
(Exercise 9.2.4). Since this allows us to eliminate p.x and q.x from action
React, actions Send and React can be interpreted as synchronous message
passing actions, to be executed by participants p and q, respectively.
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The correctness of the transformation requires us, of course, to prove that
liveness properties have also been preserved in it (Exercise 9.2.5).

9.2.11 Discussion

Various problems in the decentralization of actions have been illustrated in
this section by representative examples. The techniques of superposition and
elimination of variables have shown their power and feasibility in carrying out
such transformations in a well-managed manner.

In particular, transformations for decoupling of effects are important if
the actions of a centralized specification have participants that cannot have
actions with each other in an implementation. The example in Sect. 9.2.10
(p. 329) demonstrates such decoupling under the assumption that synchronous
message passing can be used. With only asynchronous message passing, neigh-
boring processes p, q ∈ P could not participate in the same actions, which
would lead to the need for an auxiliary participant to represent a communi-
cation channel (see Exercise 9.2.8). An example of using this technique was
discussed already in Sect. 8.5 (p. 291).

When a variable p.x is turned into a ‘ghost’ variable, its representation
function is not, in general, local to process p itself, as it was in the simple
situation of Sect. 9.2.10. This means that other actions that utilize the value of
p.x may not have any decentralized possibilities to access it. This usually leads
to temporary disabling of such actions, which means that the preservation of
their liveness properties may also give further proof obligations.

Review Questions

Question 9.2.1 What is the significance of separable guards? Why is it pos-
sible for a separable guard to contain arbitrary logical connectives?

Question 9.2.2 How is nondeterminism present in programming languages
for distributed systems?

Question 9.2.3 What is the difference between synchronous interactions and
synchronous message passing mechanisms?

Question 9.2.4 When concurrent processes are modeled as action systems,
why is it possible that the effects of the same piece of code are included in
several different actions?

Question 9.2.5 What kind of asymmetry is often present in the mechanisms
for synchronous interaction, and what is the reason for this?
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Exercises

Exercise 9.2.1 Consider an Ada process (i.e., a ‘task’) that contains a non-
terminating loop with two alternatives for an interaction in each cycle:

loop
select accept entry 1 do · · · end; · · · ; – – alternative 1

or accept entry 2 do · · · end; · · · ; – – alternative 2
end select;

end loop;

Discuss how this code can be reflected in an action-system model, and which
kinds of fairness requirements could be enforced by a compiler. Why would
weak fairness properties be sensitive to whether the alternatives are thought
of as single actions or as sequences of several actions?

Exercise 9.2.2 Give a high-level description of an exchange sort system
where an additional action forces each process to enter a final state after the
sorting has been finished. Combine different techniques demonstrated in this
section to obtain an ‘efficient’ specification that could be directly implemented
with synchronous message passing mechanisms. Show that the construction
is correct, and write out its final actions.

Exercise 9.2.3 Show that the liveness properties of the original layer Sort
are preserved in the construction of layer Sort1 in Sect. 9.2.7 (p. 326).

Exercise 9.2.4 Formulate and prove the intended invariants for the con-
struction in Sect. 9.2.10 (p. 329). In particular, show that invariant (9.3) is
satisfied.

Exercise 9.2.5 Show that the construction in Sect. 9.2.10 (p. 329) also pre-
serves liveness properties.

Exercise 9.2.6 Concerning the construction in Sect. 9.2.10 (p. 329), consider
allowing p to respond to the left after initiating communication to the right,
i.e., leaving condition q.Passive out from the guard of React. What kind of
errors would this allow, and how would this be reflected in an attempt to
prove the necessary invariants?

Exercise 9.2.7 Consider the possibility of allowing either one of the two
partners to initiate a communication event in the construction in Sect. 9.2.10
(p. 329).

Exercise 9.2.8 Change the construction in Sect. 9.2.10 (p. 329) to one where
the resulting actions can be implemented using an asynchronous message pass-
ing mechanism. Would the representation function for p.x still allow other
actions to access its value at any time?
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9.3 Uniform Fairness Assumptions

Fairness is a basic ‘force of nature’ that forces actions into execution in our
theory. As a theoretical notion it is an abstraction of the reality, in which
no such force is available for explicit utilization. The validity of all fairness
assumptions therefore needs to be checked. For distributed systems this leads
to specific questions, since the interleaving model with its fairness notions is
an even ‘more theoretical’ model for them than for non-distributed systems,
as is apparent from the analysis in Sect. 9.1.

For an asynchronous message passing mechanism, for instance, a prim-
itive ‘fairness force’ can be assumed to ensure only that every message will
eventually be delivered. Even this is often an unrealistic assumption of the un-
derlying physical reality, in which case a communication protocol is required
to guarantee that no incorrect messages are delivered, and that all messages
will eventually be delivered. Furthermore, only probabilistic enforcement of
such properties is possible in practice, which guarantees them with probabil-
ity 1, but still leaves the theoretical possibility for unfair or otherwise incorrect
behaviors with probability 0 (see Sect. 2.3.9, p. 45).

In this section we analyze which kinds of basic fairness assumptions are
reasonable for uniform enforcement in distributed action systems, even though
only very weak assumptions can be made about the ‘fairness force’ that is
available for doing this.

9.3.1 Enforcement of Fairness Properties

Theoretically, the underlying primitive fairness force could be utilized to con-
struct a fairness scheduler for an arbitrary distributed action system. As dis-
cussed in Sect. 9.1.3 (p. 309), such a general-purpose implementation of multi-
process actions would rely on a protocol for the processes to communicate with
each other and with the scheduler.

On the other hand, as discussed in Sect. 9.2, refinement techniques can
be used to refine a system into the level of basic implementation mechanisms,
for which some fairness assumptions are directly available, and no additional
scheduling would then be needed. This latter approach would mean that multi-
process actions are effectively used only in high-level specifications.

A compromise between the two extremes is also possible. Instead of sup-
porting arbitrary fairness requirements, general-purpose conventions on hand-
shaking protocols and scheduling algorithms can be utilized to ensure some
uniform fairness properties, which are independent of the specification in ques-
tion and its specific fairness requirements. Refinement techniques can then be
used to refine specifications to a level where the required properties are guar-
anteed by these uniform properties. In particular, such refinements may add
temporary disabling of actions that might ‘compete’ with a given fair action.

The purpose of this section is to analyze uniform fairness assumptions
that are reasonable for enforcement in arbitrary distributed action systems.
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We will not, however, go into any details of how they could be enforced by
explicit protocols and scheduling algorithms.

9.3.2 Basic Actions and Action Fairness

Given an action A in a distributed action system, and a set x of possible
participants for it, A(x) will now be called a basic action.9 Whenever there
is no danger for confusion, the word ‘action’ will denote basic actions in the
following.

Assuming a finite number of processes, the number of basic actions is also
finite. They will be denoted in the following by A1(x1), . . . , An(xn), or simply
by A1, . . . , An, when the participants are of no interest.

To allow each process to evaluate independently its own readiness to par-
ticipate in actions, the guards of all actions Ai are assumed in the following
to be conjunctions of local conditions in the participants. Obviously, such a
readiness can change only as a result of executing an action in which the
process itself participates. As a consequence, an enabled action cannot be
disabled without some of its participants participating in an action.

The fairness requirements that are expressible in distributed action sys-
tems are strong and weak fairness requirements with respect to basic actions
or some disjunctions of them. The assumption of weak (strong) fairness with
respect to each action would give us simple uniform fairness assumptions,
which we call weak (strong) action fairness, and abbreviate as WAF (SAF):

WAF ∆
= WF(A1) ∧ · · · ∧ WF(An) , (9.4)

SAF ∆
= SF(A1) ∧ · · · ∧ SF(An) . (9.5)

These would obviously be very strong assumptions, which would not be real-
istic for distributed implementation.

9.3.3 Example: Dining Philosophers

The well-known dining philosophers problem will be used in the following
to illustrate the kinds of refinements that are useful in making the fairness
requirements of a specification implementable by general-purpose protocols.

The problem is formulated as follows. There are n philosophers pi, i =
0, . . . , n − 1, n > 1, sitting around a table, and there are n forks fi, i =
0, . . . , n − 1, one between each two neighboring philosophers (see Fig. 9.10).
The main work of philosophers is to think, but they also need to eat every now
and then. Therefore, an unbounded amount of spaghetti is provided, but, for
eating spaghetti, a philosopher needs both of the two forks that are next to
him. This has the consequence that it is not possible for any two neighboring

9Non-participant parameters can be omitted, because of the assumption that
their values are uniquely determined by a single participant (see Sect. 9.2.2, p. 317).
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Fig. 9.10. Five dining philosophers

philosophers to eat at the same time. The problem is to coordinate the system
so that no philosopher will starve.

The philosophers and the forks are modeled as processes p ∈ P and f ∈ F,
respectively. The topology of the processes can be expressed as follows: the
philosophers form a ring, where p.next and p.prev indicate the neighbors10

on the right and on the left of p, respectively, and p.left and p.right indicate
the two forks associated with p. A Boolean variable p.hungry, initialized as
false, will indicate whether philosopher p is hungry or not.

The lives of the philosophers can now be described in a high-level model
Life by two actions:

Think(WFp : P) : ¬p.hungry→ p.hungry ′ = true ,

Eat(WFp : P; l, r : F) : l = p.left

∧ r = p.right

∧ p.hungry→ p.hungry ′ = false .

Obviously, the fairness requirements in this specification imply the de-
sired liveness property that every philosopher eats infinitely often. It is not,
however, obvious how this property can be enforced in a distributed imple-
mentation. To be more precise, it would be the task of a fairness scheduler to
eventually stop the continual eating of philosophers p0 and p2, for instance,

10Although these neighbor relations are not utilized in the actions to be given in
the text, they are introduced to indicate potential partners of direct communica-
tion. Obviously, other possibilities for such communication relations could also be
assumed.



336 9 Distributed Systems

� �
�

� � �
�

� �� � �
� � �� � �
�

� �
· · ·

Think Think

Think Think

Think

Eat Eat

Eat Eat

· · ·

· · ·

time

Fig. 9.11. A concurrent execution scenario, where philosopher
� � starves

if forks f1 and f2 would not otherwise become simultaneously available for
philosopher p1(see the scenario in Fig. 9.11). In the absence of such a fair-
ness scheduler, similar disabling has to be built explicitly into the system, in
which case some more primitive assumptions are sufficient to guarantee fair
execution of eating actions.

9.3.4 Insufficiency of Fundamental Liveness

As discussed in Sect. 2.3.6 (p. 43), fundamental liveness (FL) is a natural
basic fairness assumption for deterministic systems. Disregarding the parti-
tioning of actions into system and environment actions, the meaning of this
is: if something can happen, then something will eventually happen. For the
situation discussed in this section, FL can be formalized as weak fairness with
respect to the disjunction of all basic actions Ai, i = 1, . . . , n:

FL ∆
= WF(A1 ∨ · · · ∨ An) . (9.6)

We start with two observations about the (non-)applicability of FL as a
fundamental assumption for distributed systems. Firstly, it is easy to think
about poorly designed communication protocols that do not enforce even FL.
For instance, if there are three actions A(p, q), B(q, r), and C(r, p), which
are all continually enabled, there is a possibility for infinite communication
scenarios that do not lead to a consensus between the three processes p, q,
and r about the selection of the next action. Still, FL would require one of
them to be executed. This shows, in fact, that there exists no reasonable
fairness notion that could be attributed directly to the underlying reality of
distributed systems.

Secondly, although anything weaker than FL does not seem useful, FL is
clearly insufficient for distributed systems, and somewhat stronger assump-
tions are therefore needed. For instance, if the processes of a system are com-
pletely independent, FL does not ensure progress in each of them. In that
situation it would be natural to strengthen FL into separate FL assumptions
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for each process, the meaning of which is: if a process can continually do
something, it will eventually do something.

More formally, if Ap denotes the disjunction of all basic actions in which
process p is a participant, such weak liveness of all processes is defined as

WL ∆
=

∧

p

WF(Ap) , (9.7)

and the corresponding strong liveness of all processes is

SL ∆
=

∧

p

SF(Ap) . (9.8)

In any behavior that conforms to the scenario of Fig. 9.11 (p. 336), action
Eat is continually enabled for philosopher p1 after his thinking action, but no
more actions are executed for him. This shows that even WL is too strong to
be taken as a basic assumption in the general case – not to speak about SL,
which is even stronger.

This scenario also demonstrates that WL cannot, in general, be enforced
without reducing concurrency. The notions of WL and SL will, however, be
used in Sect. 9.3.9 in a context where such problems do not arise.

9.3.5 Weak Interaction Fairness

In the absence of nondeterminism, FL is equivalent to WAF (9.4). In general,
WAF is stronger than FL, but also stronger than WL. In searching for a
suitable basic fairness notion for distributed systems we look, however, for a
condition of the form (9.4), where the conjuncts WF(Ai) are appropriately
weakened.

The reason for the difficulties in ensuring WF(A) for a basic action A
is that the participants of A may be engaged in other actions instead, as
was illustrated in the scenario of Fig. 9.11. It seems reasonable, however, to
assume that all participants of A cannot stay idle indefinitely, if A is continually
enabled.

This leads to the following definition of weak interaction fairness with
respect to a basic action A, denoted by WIF(A):

• A behavior satisfies WIF(A) for a basic action A if it cannot be the case that,
from some point on, A is continually enabled, but none of its participants
is involved in any action.

Unlike WF(A) and SF(A), WIF(A) is not a TLA property of behaviors
in isolation from the basic actions of the system and of their participants. In
Sect. 9.3.8 we will, however, introduce a transformation after which WIF(A)
can be expressed as an ordinary weak fairness property in the transformed
system.
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The uniform fairness property that we can now take as the basic liveness
assumption in distributed action systems is WIF(Ai) with respect to all basic
actions Ai, i = 1, . . . , n, called weak interaction fairness (WIF):

WIF ∆
= WIF(A1) ∧ · · · ∧ WIF(An) . (9.9)

Obviously, WIF implies that, for any set of enabled actions, either an
action of this set will eventually be executed, or one of their participants gets
involved in some other action. Therefore, WIF implies FL, and in the case
of independent processes also WL. It is also easy to see that, unlike with
WL, scheduling with the WIF property never leads to conflict with full use of
maximal parallelism.

For the basic form of the dining philosophers example given in Sect. 9.3.3
(p. 334), WIF enforces an infinite number of eating actions, but allows the
starvation of any individual philosopher.

9.3.6 Outline for Enforcing WIF

Presenting WIF as the basic liveness property for distributed action systems is
actually quite a strong statement, since it is not a trivial task to design a truly
distributed communication protocol that guarantees uniform enforcement of
WIF(A).

If a centralized scheduler can be used, the task is, however, not difficult at
all. When idle, each process can evaluate its readiness to participate in actions
and send this information to the scheduler, which can then select actions for
execution and inform the participants about this. Since the scheduler contin-
ually has information about the processes’ readiness to participate in actions,
it is easy to select actions in such a way that the WIF property is guaranteed.

In the absence of a centralized scheduler, processes can broadcast their
readiness messages to other processes concerned, which makes it possible for
some of them to detect actions that are enabled. The main problem in this
is that overlapping sets of participants may lead to mutually contradictory
suggestions for action selection. Even when only asynchronous messages are
available for communication, it is possible to resolve such conflicts by desig-
nating one of the participants of each action as its ‘master’, and letting the
masters of competing actions negotiate and agree on the selection. Correct
and efficient organization of such a distributed negotiation is more difficult
than ensuring WIF by the result, and will not be discussed here.

An intermediate situation is one where messages are transmitted through
a broadcast channel (like Ethernet, for instance). This imposes a unique or-
dering on all messages, and this same order will then be recognized by all pro-
cesses. No designated masters are then needed for actions, and any participant
can suggest an enabled action to be executed. When conflicting suggestions
arise, the unique ordering of messages can be utilized to make the processes
accept or refuse these suggestions in a consistent manner, and so that the
WIF property will also be guaranteed.
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9.3.7 Philosophers with Counters on the Forks

Two enabled actions are said to be competing if their participant sets overlap.
In the absence of competition, WIF eventually forces an enabled action into
execution. When designing a system for WIF, one should therefore design it so
that, if a continually enabled fair action is not executed, WIF is also sufficient
to ensure that all competition will eventually be eliminated for it.

As an example, consider the competition between the eating actions of two
neighboring philosophers. For any philosopher p ∈ P, elimination of competi-
tion means that the eating actions of both neighbors must eventually become
disabled, unless p itself gets a chance to eat.

One possibility to enforce this is to add counters l count and r count to
the forks, indicating the number of times they have been used as left forks
and right forks, respectively, and maintaining some bound k, k > 0, for the
differences of these numbers.11 The eating actions can then be refined into

Eat(WFp : P; l, r : F) : Life.Eat(p, l, r)

∧ l.l count − l.r count < k

∧ r.r count − r.l count < k→ l.l count ′ = l.l count + 1

∧ r.r count ′ = r.r count + 1 ,

and invariants

�(p.left.l count = p.right.r count) , (9.10)
�(|f.l count − f.r count| ≤ k) (9.11)

will then be satisfied for all philosophers and forks, respectively.
Because of the topology of the processes, a deadlock in the system would

imply that the difference f.l count−f.r count is either k for all forks f, or −k

for all of them, both of which situations would violate invariant (9.10). (Check-
ing this is left as an exercise to the reader; see Exercise 9.3.6.) Therefore, WIF
forces an infinite number of eating actions to be executed and

∑
f f.l count,

for instance, will then grow unboundedly.
On the other hand, the invariants also imply that for two neighboring forks

l and r, the difference |l.l count − r.l count| never exceeds k. (Checking this
is left as an exercise to the reader; see Exercise 9.3.6.) Therefore, for two
arbitrary forks this difference can never exceed n/2 ∗ k. This means also that
every individual philosopher must eat infinitely often.

Considering the situation from the viewpoint of a single enabled eating
action, the counters ensure eventual elimination of competition: unless a given
eating action is executed, the two potentially competing eating actions will
eventually become permanently disabled.

11Obviously, only the differences of these counters are needed, but the proofs are
easier with separate counters.
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9.3.8 Monitoring of Actions Reconsidered

When the execution of actions is monitored for scheduling purposes, as dis-
cussed in Sect. 9.1.3 (p. 309), the monitored sequence may contain both the
handshakes for actions and also the events where a process releases an ac-
tion. Such a sequence corresponds, in fact, to a behavior in a modified action
system that can be obtained from the original by simple superposition, and
which models concurrency in a simple manner.

To be more specific, let S be an arbitrary distributed action system (in
which all fairness requirements are irrelevant, for the moment), and let S∗ be
the distributed action system obtained from it as follows. As for variables,
each process (i.e., each class) in S is extended with a Boolean variable b,
initialized as false, to indicate whether the process is currently engaged in an
action or not. As for actions, each action A (with k participants in classes
P1, . . . , Pk) is refined into

A∗(p1 : P1, . . . , pk : Pk) : S.A(p1, . . . , pk)

∧ ¬p1.b ∧ · · · ∧ ¬pk.b→ p1.b ′ = true

· · ·
∧ pk.b ′ = true ,

and a new action R is added for each process class P to model the event that
a process p ∈ P is released from some action:

R(WFp : P) : S.Stutter

∧ p.b→ p.b ′ = false .

Monitoring an arbitrary concurrent execution in a distributed action sys-
tem S would then yield a refined behavior σ∗ in system S∗, instead of the cor-
responding behavior σ in S, as illustrated in Fig. 9.12. The fairness assumption
in action R models the requirement that each participant is eventually released
from executing an action. Enforcing further fairness properties on behaviors
σ∗ would impose further liveness properties on the corresponding behaviors σ

that can be generated.

9.3.9 WIF and Beyond

There is now a simple relationship between scheduling on the basis of behav-
iors σ∗, which relate to the transformed distributed action system S∗, and
enforcing WIF for the corresponding behaviors σ in the original system S:

• An implementation of a distributed action system S satisfies WIF iff the
associated behaviors in S∗ satisfy WAF.
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Fig. 9.12. Example of concurrent execution of actions in a system S, with a corre-
sponding behavior in S∗

Showing this is left as an exercise for the reader (Exercise 9.3.9).
Other reasonable uniform fairness notions, which are stronger than WIF,

but not in conflict with maximal parallelism, can now also be formulated as
follows:

• An implementation of a distributed action system S is said to satisfy weak
process fairness (WPF) iff the associated behaviors in S∗ satisfy WL (see
the definition (9.7) of WL on p. 337).

• An implementation of a distributed action system S is said to satisfy strong
process fairness (SPF) iff the associated behaviors in S∗ satisfy SL (see the
definition (9.8) of SL on p. 337).

• An implementation of a distributed action system S is said to satisfy strong
interaction fairness (SIF) iff the associated behaviors in S∗ satisfy SAF.

This list was given in an increasing order of strength. Therefore, the im-
plications shown in Fig. 9.13 hold for all action systems (see Exercise 9.3.10).

SAF WAF
�

SIF WIF

� �

SPF WPF

� �

�

Fig. 9.13. Implications between different uniform fairness notions

Review Questions

Question 9.3.1 What is meant by uniform fairness properties, and how can
they be utilized?



342 9 Distributed Systems

Question 9.3.2 What is meant by basic actions?

Question 9.3.3 What are the definitions of FL and WL, and are they too
weak or too strong to be used as basic fairness assumptions on distributed
action systems?

Question 9.3.4 Why is it not possible to say that WIF is a basic ‘law of
nature’ in distributed systems?

Question 9.3.5 Do the fairness notions of this section allow scheduling with
maximal parallelism?

Question 9.3.6 In which sense does the transformation of action systems in
Sect. 9.3.8 (p. 340) reflect concurrency?

Exercises

Exercise 9.3.1 Give a model for the situation where several sender processes
share the same communication channel for messages. Discuss the need and
feasibility of associated fairness assumptions.

Exercise 9.3.2 Give a formal definition of WIF (see Sect. 9.3.5, p. 337).

Exercise 9.3.3 Outline a centralized scheduler that guarantees WIF (see
Sect. 9.3.6, p. 338).

Exercise 9.3.4 Outline a communication protocol that ensures FL (see
Sect. 9.3.4, p. 336) with maximal parallelism without using a centralized
scheduler. Hint: since it does not matter for FL how competition conflicts
are resolved, this can be done simply by assigning priorities to actions.

Exercise 9.3.5 What is the minimum number of philosophers that eat in-
finitely often under WIF in the basic version of the dining philosophers ex-
ample in Sect. 9.3.3 (p. 334)?

Exercise 9.3.6 Check the reasoning for the construction in Sect. 9.3.7
(p. 339).

Exercise 9.3.7 Formulate a solution for the dining philosophers problem
that is based on the following idea. A number of tokens is associated with the
forks, eating is allowed only with at least one token on the left fork, and each
eating action transfers one token from the left fork to the right fork. Is WIF
now sufficient for preventing starvation?
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Exercise 9.3.8 If fairness requirements are associated with actions in a dis-
tributed system S, are these always feasible for the transformed system S∗,
discussed in Sect. 9.3.8 (p. 340)?

Exercise 9.3.9 Show that WIF in a distributed action system S is equivalent
to WAF in the transformed system S∗, as claimed in Sect. 9.3.9 (p. 340).

Exercise 9.3.10 Prove that the implications in Fig. 9.13 (p. 341) hold for
all action systems, but none of these can be replaced by an equivalence (for
arbitrary action systems).

Exercise 9.3.11 Why are WL and SL not the same as WPF and SPF, re-
spectively?

Exercise 9.3.12 Prove that WL implies WPF, but even SIF does not imply
WL.

9.4 Generic Example of Coordination

Computing often proceeds through cyclic stages. In a centralized system, as
defined in Sect. 9.2.2 (p. 317), all processes can enter the next stage in a
synchronized fashion, when the previous stage has been completed. Compared
to this, a distributed system offers the flexibility that consecutive stages can
overlap: some processes can already enter the next stage while some others
are still completing their parts in the previous stage. This must, however, be
done in a coordinated manner.

A general solution to this generic problem in the coordination of dis-
tributed processes will be discussed in this section.

9.4.1 Cyclic Stages

Consider a situation where, according to a global view, computation proceeds
cyclically through a sequence of stages 1, 2, . . . , k, 1, 2, . . . . In a distributed
implementation one may then have processes p ∈ P that cycle through cor-
responding local stages 1, . . . , k, 1, . . . and communicate with each other only
when they are in the same stage.

For simplicity we will assume that k = 2 in the following, and an integer-
valued local variable p.stage will be used to indicate the local stage of process
p.

Figure 9.14 gives an example of a scenario for how the processes in a
distributed implementation may then proceed. The direction of time is from
left to right and, for each process p1, . . . , p4, the moments are shown when
it enters the next stage 1 or 2. Obviously, some of the processes may already
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Fig. 9.14. Coordinated stages in four processes

communicate with each other in a new stage, while some others are still doing
that in the previous stage.

The processes must, however, be coordinated so that two processes in
the same stage are also within the same cycle of stages. In other words, if
an imaginary local counter p.i (initialized as 0) is incremented each time
when the local stage p.stage changes, two processes can be in the same stage
only when these counters have the same values. Obviously, if the maximum
difference of these imaginary counter values is guaranteed never to exceed 1,
then p.stage = q.stage implies p.i = q.i for p, q ∈ P.

As for externally visible actions, by which the processes of the system
communicate with the environment, these must be constrained to be executed
in a fashion that would also be possible in a centralized implementation. This
is the case if the executions of such externally visible actions of one stage
always precede those of the next stage.

The situation can be understood as a relaxation of barrier synchronization,
in which processes are prevented from proceeding beyond a ‘barrier’, until all
processes have reached it. In our situation, where the barrier corresponds to
entering the next stage, we do allow processes to proceed beyond it, as long
as this has no effect on the resulting externally visible behavior.

9.4.2 Critical Moments and Actions

Since there is no global indication of the two stages, we have to examine more
closely how the local stages are allowed to change. As indicated by the dashed
and solid vertical lines in Fig. 9.15, the system should repeat the following
cycle of states, where every second state overlaps with the succeeding one:

(∀p : p.stage = 1) → (∃p : p.stage = 2) →
(∀p : p.stage = 2) → (∃p : p.stage = 1) →
(∀p : p.stage = 1) → · · · .

For each stage those moments are significant at which the last process
enters the stage. In Fig. 9.15 these critical moments have been marked by
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Fig. 9.15. Cycle of local stages

solid vertical lines. To guarantee correct operation, the processes have to be
coordinated so that no critical actions of a new stage are executed before this
moment. By critical actions we mean

• actions in which a process exits a stage and enters the next one, and
• externally visible actions in which a process communicates with the envi-

ronment.

Allowing no process to exit a stage before the critical moment guarantees
that the difference between two imaginary counter values p.i never exceeds 1.
Disallowing externally visible actions before the critical moment then ensures
that the overlap of local stages has no effect on the externally visible behavior
of the system.

9.4.3 Global Guards for Critical Actions

The guard of each critical action requires an expression that is turned true
at the critical moment, and stays true at least until all critical actions of the
current stage have been executed. Obviously, the local stages of the processes
cannot be directly used for this purpose.

The desired expressions can be obtained with the aid of two local Boolean
variables p.a and p.b in each process p ∈ P. If they are all initialized as false,
and if p.b (p.a,) is complemented each time when p enters stage 2 (1), then
these variables have the same values in all processes during the intervals shown
in Fig. 9.16. Furthermore, process p is in stage 1 (2) exactly when p.a = p.b

(p.a �= p.b), which shows that variables p.stage can be omitted.
Now, process p is in stage 1, and all other processes have also entered this

stage (although they may have exited it already), if and only if

p.a = p.b ∧ ∀q ∈ P : q.a = p.a ,
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Fig. 9.16. Global conditions for critical actions

and the corresponding situation exists for stage 2 when

p.a �= p.b ∧ ∀q ∈ P : q.b = p.b .

This gives the desired global conditions that can be used in the guards of
critical actions in the two stages.

Decentralization of actions can then take place with the techniques de-
scribed in Sect. 9.2 (p. 316). In particular, one can get rid of the global con-
ditions in guards, as shown in Sect. 9.2.6 (p. 325).

9.4.4 Example: Repeated Exchange Sort

Related to the sorting example of Sect. 9.2.5 (p. 324), consider its generaliza-
tion to repeated sorting, where the sorted numbers are to be given as output
in critical actions, and a new set of numbers is to be obtained as input in the
same actions.

Obviously, a crucial correctness condition here is that the numbers of dif-
ferent sets of numbers do not get mixed. The sorting and output of one set of
numbers, as well as the input of the next set, can be considered to constitute
a single stage of computation. The computation then alternates between the
stages of dealing with odd-numbered sets and even-numbered sets.

The only critical actions are now those in which the sorted numbers are
given as output and new numbers are accepted as input. These actions obvi-
ously satisfy both conditions for criticality.

For odd-numbered sets of numbers the required actions can now be given
in a centralized form as follows:
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WFExchange1(p, q : P) : p.next = q.id

∧ p.a = p.b

∧ q.a = q.b

∧ p.x > q.x→ p.x ′ = min(p.x, q.x)

∧ q.x ′ = max(p.x, q.x) ,

WFProceed1(p : P; u, v : Z) : p.a = p.b

∧ ∀q ∈ P : q.a = p.a

∧ ∀q ∈ P : q·Next+·p ⇒ q.x ≤ p.x

∧ ∀q ∈ P : p·Next+·q ⇒ p.x ≤ q.x

∧ u = p.x→ p.x ′ = v

∧ p.b ′ = ¬p.b .

For even-numbered sets the corresponding actions are

WFExchange2(p, q : P) : p.next = q.id

∧ p.a �= p.b

∧ q.a �= q.b

∧ p.x > q.x→ p.x ′ = min(p.x, q.x)

∧ q.x ′ = max(p.x, q.x) ,

WFProceed2(p : P; u, v : Z) : p.a �= p.b

∧ ∀q ∈ P : q.b = p.b

∧ ∀q ∈ P : q·Next+·p ⇒ q.x ≤ p.x

∧ ∀q ∈ P : p·Next+·q ⇒ p.x ≤ q.x

∧ u = p.x→ p.x ′ = v

∧ p.a ′ = ¬p.a .

To prevent mixing between numbers in different sets, the exchange actions
check that processes p and q are in the same stage. The guards of the critical
actions Proceed1 and Proceed2 contain several global conditions: the ones
checking that all processes have entered the stage of process p, and the ones
checking that p.x already has the final value. The value p.x is made available
as output as parameter u, the next number is input as parameter v, and either
p.a or p.b is complemented, as required of an action that changes the local
stage.
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Transforming these actions into a form with only shared guards is left as
an exercise for the reader (Exercise 9.4.3).

Review Questions

Question 9.4.1 How does the coordination problem discussed in this section
relate to barrier synchronization?

Exercises

Exercise 9.4.1 Prove that introducing variables p.a and p.b, as shown in
Sect. 9.4.3 (p. 345), has the effect that the maximum difference between the
values in p.i is 1.

Exercise 9.4.2 Generalize the discussion in this section to cyclic computa-
tions with more than two stages. Give a generic specification layer on which
solutions to specific problems of this kind can be superposed.

Exercise 9.4.3 Transform the actions in the repeated exchange sort example
of Sect. 9.4.4 (p. 346) into a form with no global guards.
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like languages [117]. The language-independent analysis in Sect. 9.3.9 (p. 340)
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resistant and equivalence-robust fairness notion proposed in [16].
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ent fairness notions. An early impossibility result for distributed systems was
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The implementability of different fairness notions by deterministic algo-
rithms and without reducing parallelism was first studied by Tsay and Bagro-
dia [189], and more extensively by Joung [99], who also gave a necessary
and sufficient condition for such implementability. Applying this criterion, he
showed that, of the fairness notions discussed in Sect. 9.3.9 (p. 340), weak
process fairness (WPF) is the strongest that is implementable in the general
case. For two-party interactions even strong process fairness (SPF) is imple-
mentable, whereas SIF is also unimplementable in this case. In [98] Joung
gives, however, randomized algorithms with which SIF can be implemented
with probability 1.

The fairness paradox was first noted by Apt et al. [12], and equivalence
robustness was then given as one of the criteria for an acceptable fairness
notion. The relevance of this requirement was questioned in [19], where equiv-
alence robust completions of non-robust fairness notions were suggested. A
more detailed analysis of such completions was given by Francez et al. [62].
Further work on robust completions and their implementability has been done
by Joung [100]. Solving the fairness paradox by the modified notion of obser-
vations described in Sect. 9.1.5 (p. 313) was outlined in [129] and presented
explicitly in [126].
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The idea of refining an action system into a form where it is implementable
in a distributed fashion was used by Back and Kurki-Suonio [20]. Extending
this design method to deal with fairness properties has been discussed in [122,
133, 131]. In [109], Kellomäki has studied how message passing protocols can
be derived from collective behaviors by superposition.

Proof methods for the generic coordination problem discussed in Sect. 9.4
(p. 343) have been developed by Elrad and Francez [52], and by Stomp and
de Roever [185].

Distributed implementation of the repeated exchange sort example pro-
vided the initial inspiration for the superposition-based development method
of this book, which was first presented in [20]. The same example was also used
by Kurki-Suonio in formalizing the notion of ‘knowledge’ in the development
of distributed systems [118]. The epitomical example of dining philosophers,
originally due to Dijkstra [42], has been used in analyzing different fairness
notions for distributed systems, for instance in [18, 19, 16].
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Real Time

Real-time properties are often critical for the correct behavior of reactive
systems. Therefore, it is important for a specification and modeling formalism
to be able to deal with them also.

In this chapter we investigate how the modeling of real time can be added
to action systems and the action language, and how real-time properties can
then be enforced in specifications. The plan for the chapter is as follows:

• In Sect. 10.1 we show how time can be superposed on action systems,
and how temporal requirements can then be expressed. Introduction of
time also leads to the counterintuitive possibility for behaviors in which
an infinite number of actions are executed in finite time. The consequences
of this phenomenon are also discussed in this section.

• In Sect. 10.2 generic classes are introduced for the modeling of periodic
and aperiodic events in a real-time system. This demonstrates how object-
oriented modeling concepts can be useful for logical modeling even when
no object structure can be recognized in the system to be modeled.

• Section 10.3 extends the approach to hybrid systems that also have contin-
uously changing state functions. This makes it possible to model physical
phenomena in control applications, for instance.

10.1 Modeling of Real-Time Properties

Modeling of real-time properties is based on treating time as a special state
function, whose value increases monotonically. In contrast to ordinary state
functions, its value is intuitively understood to grow continuously, not in dis-
crete steps.
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10.1.1 Introducing a Clock

As a continuous state function, time is not directly available in actions as
such. Instead, we introduce a clock as a state variable in which the current
time is recorded in actions.

The clock variable will be denoted by Ω, and its value is assumed to be a
non-negative real number,1 initialized as 0. Intuitively, Ω records time from
the beginning of a behavior.

Variable Ω is assumed to be introduced in a simple specification layer
Time. To update the clock reading, this layer has just one action,

Record(τ : R) : τ ≥ Ω→ Ω ′ = τ ,

where the parameter τ gives the new clock reading. Reflecting monotonic
growth of time, step invariant

�[Ω ≤ Ω ′] (10.1)

now holds, which means that clock Ω is never turned backward.

10.1.2 Timing of Actions

A specification without the clock variable Ω is called non-timed. Composing
non-timed specifications with layer Time gives timed specifications.

In composing a non-timed specification S with Time we adopt the fol-
lowing conventions. For each action S.A we include in the composition the
synchronization of S.A and Time.Record. In addition, we include ‘as such’
the non-synchronized action Time.Record, which is ‘almost stuttering’ in the
sense that the only variable affected by it is the clock Ω. By excluding non-
synchronized refinements of actions S.A we achieve the situation that record-
ing of the current time is enforced in all actions.

Fairness requirements for the synchronized actions are taken directly from
S. Since the enabling of the actions of layer S is not affected, all properties of
layer S are then preserved in this composition.

The principle of recording the current time in all actions is also extended
to refinements of timed specification layers, so that each action will always
have Time.Record as its ancestor. In addition, there will always be the default
refinement of action Time.Record, which in further refinements and composi-
tions takes the role that the stuttering action has in non-timed specifications.

1If one wishes to have a countable set instead, real numbers can be replaced by
some countably infinite but dense subset, for instance by rational numbers. (A set
of numbers � is dense if, for each pair �

�

� ∈ �
�

� � �
� there is a number � that lies

between them, � �
�

� � .)
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Each action in a timed specification then has parameter τ, which indicates
the time at which it is executed. For simplicity, the execution of an action is
thought to take place instantaneously at that moment.2

Notice that the causality between time – as indicated by clock readings –
and events is now in some sense the converse of how one usually thinks about
real-time systems: in our models observable events do not take place because
time passes, but the passing of time is noticed as a result of an observable
event. In other words, no ‘force’ is postulated to make time proceed as such. It
is still only fairness that can force actions to be executed, and the proceeding
of time can be observed in the value of Ω as a consequence of this.

10.1.3 Real-Time Properties

Behaviors in timed specifications will be called timed behaviors. In addition
to non-real-time properties, timed behaviors also have real-time properties, in
which clock values Ω (i.e., execution moments of actions) can be referenced.

As far as non-real-time properties are concerned, the composition of a
non-timed specification S with Time is obviously equivalent to S. That is,
their non-real-time properties are the same.

Non-trivial real-time properties can be added to a specification by further
superposition that constrains the execution moments of actions, typically by
giving lower and/or upper bounds for the parameter τ. Facilities to do this in
a convenient manner will be introduced below.

Obviously, adding upper bounds for τ to fair actions leads to proof obli-
gations for the preservation of liveness properties, since this is an essential
strengthening of their guards.

Real time cannot be referenced directly in this approach; it is available
only indirectly through the clock. In isolation from actions, the clock is not
updated, and time itself therefore remains outside the formalism. For instance,
we cannot express the intuitively natural property that time will grow un-
boundedly. Instead, we can express whether clock readings will exceed any
finite bound when an infinite number of actions is executed.

For simplicity of presentation, suppose that there is an auxiliary variable
τA for each action A, recording the most recent execution moment of A. That
is, an ‘assignment’

τ ′
A = τ

is assumed in the body of A. To indicate that A has not been executed, ini-
tialization of τA with some negative value can be assumed.

As an example, let A and B be two actions whose executions are known to
strictly alternate, A representing a stimulus, and B being the response to it.

2From the viewpoint of concurrent executions, as discussed in Chap. 9, the pa-
rameter � can be understood as the start time of an action. When needed, durations
of actions can be explicitly built into a model, for instance using the kind of trans-
formations discussed in Sect. 9.3.8 (p. 340).
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The bounded response property that a response must always follow within a
deadline d from a stimulus can now be expressed as

〈A〉 � 〈B ∧ Ω ′ ≤ τA + d〉 . (10.2)

Formally (10.2) is a liveness property. However, in the presence of (10.1)
on p. 354, i.e., the safety property that the clock is never turned backward,
this liveness property is equivalent to the conjunction of the liveness property
that each stimulus leads to a response,

〈A〉 � 〈B〉 , (10.3)

and the safety property that a response never comes too late,

�[B ⇒ Ω ′ ≤ τA + d] . (10.4)

In general, it is characteristic to many ‘real-time liveness properties’ that
they add safety properties to the corresponding non-real-time liveness prop-
erties from which all timing constraints have been deleted.

10.1.4 Enforcing Real-Time Properties

Enforcing an earliest execution moment t for an action is straightforward by
strengthening its guard by conjunct τ ≥ t. With latest execution moments
or deadlines the situation is more complex, since a deadline can no longer
be met after executing any action with τ exceeding this deadline. Therefore,
when a deadline t is set for some action, the execution of all actions must be
prevented for τ > t, until the deadline has been removed.

Deadlines

Technically, deadlines for action execution can be introduced by superposition
as follows:

• Deadlines that are manipulated in layer S are real numbers that can be
assigned only to new variables introduced for that purpose in layer S, and
to an implicitly introduced multiset-valued variable ∆S, which is normally
initialized as empty. A specification is assumed to be such that this ‘type
correct’ use of deadlines can be checked.

• Setting of a deadline will be expressed in an action body as

x ′ = ∆ on(d) ,

where d is a real number, and x is a new variable for storing deadlines in
this layer. The effect will correspond to assignments

x ′ = max(τ + d, τ)

∧ ∆ ′
S = ∆S + {max(τ + d, τ)} ,
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which prevent the setting of any deadlines to the past. If several ∆ on
expressions are given in the same body of an action, all associated deadlines
are added to ∆S.

• The guards of all actions, including the special action Record, are implic-
itly strengthened by an additional conjunct3

τ ≤ min(∆S) .

• Removing a deadline from ∆S will be expressed in an action body as

∆ off(x) ,

where x is a variable for storing deadlines of this layer. The effect will
correspond to assignment

∆ ′
S = ∆S − {x} .

If several ∆ off expressions are given in the same body, all associated
deadlines are removed from ∆S.

• No explicit use of variable ∆S is allowed; the value of ∆S can be updated
only by the use of ∆ on and ∆ off.

With the above conventions, variable ∆S is an implicit variable that cannot
be explicitly used in actions, and there is no need to use it in the formula-
tion of real-time properties, either. In the following, we will use ∆ to denote
collectively the set of all deadlines in the variables ∆S of all layers S.

Basic Invariants

Disallowing the introduction of deadlines that have already been passed leads
to state invariant

�(Ω ≤ min(∆)) . (10.5)

Step invariant (10.1) on p. 354 also gets the slightly stronger form

�[Ω ≤ Ω ′ ≤ min(∆)] . (10.6)

Since real-time properties are introduced by superposition, it is clear that
this does not affect any safety properties. With liveness properties the situ-
ation is obviously different. For instance, if a fair action is given an earliest
execution moment which exceeds a deadline that is never removed from ∆,
the action will continually stay disabled, and the associated fairness property
therefore cannot be satisfied.

3The minimum of an empty multiset is assumed to exceed any real number.
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Example

To achieve the bounded response property (10.2) on p. 356, actions A and B
can be extended with

x ′ = ∆ on(d)

and
∆ off(x) ,

respectively, where x is a new state variable. Obviously, this enforces the re-
quired safety property (10.4) on p. 356, but does not guarantee the associated
non-real-time liveness property (10.3).

10.1.5 Note on Implementing Deadlines

In a specification it is possible to enforce step invariant (10.6) simply by
adding the associated constraints to all guards, as was done implicitly above.
Operationally this means that the clock reading – and therefore time itself
– is not allowed to grow beyond a deadline, until this deadline and all lower
deadlines, if any, have been removed from ∆. This is associated with reversing
the intuitive causality between time and events, which was already referred
to above.

From the viewpoint of implementation, on the other hand, the clock Ω is
different from other state variables. In particular, an implementation cannot
stop or slow down the proceeding of time, and thereby affect clock readings
and enforce the satisfaction of (10.6). There are, however, other means that an
implementation can use to impose upper bounds for the execution moments
of actions.

The simplest possibility is to make sure that the code between setting
and removing a deadline is short enough. Another possibility is to use clock
interrupts and timeouts to trigger actions for which deadlines have been set.

In each case, if an implementation allows behaviors where the execution
moments of actions, i.e., the new clock readings Ω ′, do not satisfy (10.6), the
implementation is incorrect. Obviously, with short deadlines in a specification
and inefficient hardware for implementation, it may be impossible to satisfy
the real-time properties of a given specification.

10.1.6 Finite Variability

Intuitively, time grows unboundedly. Therefore, clock readings should also
grow unboundedly in infinite behaviors. Superposing time on an action system
does not, however, enforce this property, as was explained above.

The property that clock readings will eventually exceed any real number
T can be expressed as

∀T > 0 : �(Ω > T) . (10.7)
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Terminating behaviors – i.e., those that end in indefinite stuttering – can-
not, however, satisfy this property, since Ω is updated only in non-stuttering
actions (including non-stuttering executions of the ‘almost stuttering’ action
Record). Therefore, (10.7) is too strong a requirement, in general.

Since a non-stuttering step can be expressed as 〈T〉, it would seem natural
to weaken (10.7) into requiring

��〈T〉 ⇒ ∀T > 0 : �(Ω > T) , (10.8)

which expresses that executing an infinite number of non-stuttering actions
forces the clock reading to eventually exceed any finite bound. This property
disallows an infinite number of changes within any finite time interval, and is
therefore called finite variability.

10.1.7 Zeno Behaviors

Although finite variability (10.8) cannot be violated in the reality of imple-
mentations, it can be violated in specifications. This happens, for instance,
when an infinite number of actions can be executed with the same parameter
value τ. Since the possible clock readings form a dense set (see footnote 1,
p. 354), (10.8) need not hold even when each action increments the clock by
a non-zero amount.

One possibility to enforce finite variability in specifications also would be to
require each action to increment Ω by at least some minimum amount, which
amount may even be left unspecified. We consider this solution, however,
inelegant for specifications, especially since it would complicate dealing with
deadlines. Furthermore, the mere possibility for violating finite variability
need not be considered an error in specifications, since an implementation
need not implement all behaviors that a specification allows.

However, if some deadline is never removed from ∆, there is no possibility
for (10.7) to hold. If there are actions that stay enabled in this situation and
can be executed infinitely many times, then (10.8) does not hold, either.

This leads us to the notion of Zeno behaviors, which originates in the
famous paradoxes of the Greek philosopher Zeno of Elea. The most well known
of his paradoxes on infinity was formulated in terms of a running competition
between Achilles and a tortoise:

• Even though Achilles is much faster than the tortoise, he can never catch
it for the following reason. Once Achilles has covered the distance to the
tortoise, the tortoise will have advanced some distance away from its pre-
vious position, and the same procedure must be repeated. This leads to
an infinite number of steps, in which Achilles will never catch the tortoise.

In our terminology, Zeno’s scenario for Achilles and the tortoise does not
satisfy finite variability (10.8). The question that is essential for us here is
whether Achilles is forced to follow this infinite scenario, or if there are other



360 10 Real Time

options for him. It is not, in fact, harmful for a specification to allow this kind
of behaviors also, as long as it is also always possible to continue in a way
that satisfies (10.8).

The condition that there always exists an option that does not violate
(10.8) will be called the real-time feasibility condition, and it can be formalized
as the possibility property (see Sect. 3.5.12, p. 98) that it is always possible
for Ω to grow beyond any bound. In conclusion, if this possibility property
is satisfied, violation of finite variability (10.8) does not make a specification
infeasible for implementation. On one hand, impossible behaviors will auto-
matically be absent from any implementation and, on the other hand, this
feasibility condition guarantees that no implementation can ever find itself in
a state where an impossible continuation would be required.

Since possibility properties are properties of a system, not of behaviors,
we define non-Zenoness of timed behaviors as

∀T > 0 : �� min(∆) > T . (10.9)

This formalizes the property that deadlines, if there are any, will always grow
beyond any bound. A behavior that does not satisfy (10.9) is called a Zeno
behavior in the following. Absence of Zeno behaviors is a somewhat stronger
requirement than the above possibility property, under which real-time spec-
ifications are feasible.4

10.1.8 Relative Safety Properties

Like non-real-time properties, real-time properties may be safety properties,
liveness properties, or conjunctions of these.

From a practical viewpoint, a real-time property that is a pure liveness
property is somewhat artificial. For instance, the property that there will
eventually be an action A that is followed by an action B within a given
deadline is a pure liveness property, since any prefix of a behavior can be
extended into one that satisfies it. Such a property does not, however, seem
to be very useful in practice.

With an intuitive understanding of safety properties one might argue that
reasonable real-time properties, like the bounded response property discussed
in Sect. 10.1.3 (p. 355), would be safety properties. The reasoning behind this
argument would run as follows: if such a property is violated, the violation
will become apparent within a finite time. For instance, if some occurrence of
action A is not followed by B within a given deadline, this becomes apparent
after waiting for the duration of the deadline.

The above argument is, however, insufficient for making a property a safety
property, since waiting for a finite time need not correspond to a finite number
of actions, because (10.7) on p. 358 need not be satisfied, as was discussed

4Notice that a proof of this possibility property (see Sect. 3.5.12, p. 98) effectively
requires us to find a certain kind of refinement that satisfies (10.9).
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above. The informal reasoning is, however, correct in the following sense: under
the assumption that (10.7) holds, bounded response properties, for instance,
have the character of safety properties. Therefore, they can be called relative
safety properties, i.e., safety properties relative to the liveness property (10.7).
Formally, such a relative safety property can be expressed as a conjunction
of (10.7) and a safety property.

This shows that the proof techniques for safety properties are widely ap-
plicable in proving real-time properties.

10.1.9 Example: Gas-burner Revisited

As an example let us return to the gas-burner example of Chap. 2. The non-
timed specification given there will be denoted as Burner. The following real-
time properties, where d1, d2, and d3 are some constants, will now be imposed
on the composition of Burner and Time:

• The maximum time for the system to stay continuously in state Starting

(see Fig. 2.5, p. 38) is d1,

Starting � 〈¬Starting ′ ∧ Ω ′ ≤ τStart s + d1〉 .

• If the flame goes off in state Ignited, this state is exited within d2 time
units,

Ignited ∧ ¬flame � 〈Idle ′ ∧ Ω ′ ≤ tFlame off + d2〉 ,

where tFlame off denotes the time when the flame has first gone off after
state Ignited was entered – or actually the time when this was recognized
by action Flame off s.5

• Once in state Idle, the minimum time to stay in this state is d3,

�[Idle ⇒ Ω ′ ≥ max(τStop s, τClose s, 0) + d3] .

To enforce these real-time properties, three new variables are introduced, in
addition to τStart s, τStop s, τClose s, and tFlame off referred to above:

• variable d started to store the deadline for exiting state Starting,
• Boolean variable b to register flame failure in state Ignited, and
• variable d fail to store the deadline for exiting state Ignited in the case

of flame failure.

5Since we have no possibility to record the exact time when the environment ac-
tion Flame off e was executed, the maximum lag between it and action Flame off s

needs to be taken into account in determining an appropriate value for
� � . To be

exact, similar lags may also apply to determining the values of the other parameters.



362 10 Real Time

Some of the system actions are now refined to use these variables as follows:
SFStart s(τ : R) : Burner.Start s

∧ Time.Record(τ)

∧ τ ≥ max(τStop s, τClose s, 0) + d3→ τ ′
Start s = τ

∧ d started ′ = ∆ on(d1) ,

SFIgn off s(τ : R) : Burner.Ign off s

∧ Time.Record(τ)→ b ′ = false

∧ ∆ off(d started) ,

SFStop s(τ : R) : Burner.Stop s

∧ Time.Record(τ)→ τ ′
Stop s = τ

∧ ∆ off(d started) ,

SFFlame off s(τ : R) : Burner.Flame off s

∧ Time.Record(τ)→ if Ignited ∧ ¬b then
(b ′ = true

∧ t ′Flame off = τ

∧ d fail ′ = ∆ on(d2)) ,

SFClose s(τ : R) : Burner.Close s

∧ Time.Record(τ)→ τ ′
Close s = τ

∧ if b then ∆ off(d fail) .

All other actions are taken as their default refinements.
It is left for the reader to check that this system generates no Zeno behav-

iors (Exercise 10.1.1), and that the above real-time requirements are satisfied
(Exercise 10.1.2).

Review Questions

Question 10.1.1 What is meant by real-time properties in our theory?

Question 10.1.2 When deadline variables ∆S are introduced by superposi-
tion, why do we need to distinguish between variables ∆S for different layers
S?



10.2 Periodic and Aperiodic Events 363

Question 10.1.3 Why is it reasonable to allow specifications in which all
behaviors need not satisfy finite variability?

Question 10.1.4 What are the differences between finite variability (10.8),
p. 359, non-Zenoness (10.9), p. 360, and the satisfaction of the real-time fea-
sibility condition given in Sect. 10.1.7?

Question 10.1.5 Why are bounded response properties not safety proper-
ties?

Question 10.1.6 Why are the proof techniques for safety properties also
useful for bounded response properties?

Exercises

Exercise 10.1.1 Show that the action system in Sect. 10.1.9 (p. 361) gener-
ates no Zeno behaviors.

Exercise 10.1.2 Show that the action system in Sect. 10.1.9 (p. 361) satisfies
the real-time requirements given for it.

10.2 Periodic and Aperiodic Events

Typically, the purpose of real-time systems is to monitor and control some-
thing that happens in the real physical world. The speed of natural phenomena
is then essential in determining the frequency with which interactions between
a computer and its environment need to take place. For instance, measure-
ments of a physical quantity may need to be made frequently enough in order
to be able to control this quantity by changing some associated physical pa-
rameters.

This leads to the idea of periodic events, which are triggered at a given
frequency by the proceeding of time. In contrast, aperiodic events are ones that
are triggered as a reaction to something that has happened in the system.

In this section we discuss the use of generic, abstract classes in the mod-
eling of periodic and aperiodic events. The layer in which these classes are
defined will be called Events.

10.2.1 Periodic Events

Each periodic event can be associated with an object p of class Per with two
states:

class Per = {state Passive∗, Active where

Active = {d, t : R}} .
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When Active, an object p ∈ Per has attributes d and t, where d is the length
of the period for triggering the event, and t is the time for which the next
execution of the event has been scheduled.

Activation of a periodic event with a given length of period and a given
delay for its first execution takes place by action

Activate(p : Per; τ, period, delay : R) : Time.Record(τ)

∧ p.Passive

∧ period > 0

∧ delay > 0→ p.Active ′

∧ p.d ′ = period

∧ p.t ′ = ∆ on(delay) .

When active, the repeated triggering of a periodic event is modeled by action

Trigger(WFp : Per; τ : R) : Time.Record(τ)

∧ p.Active

∧ τ = p.t→ ∆ off(p.t)

∧ p.t ′ = ∆ on(p.d)

and, finally, action

Passivate(p : Per; τ : R) : Time.Record(τ)

∧ p.Active→ p.Passive ′

∧ ∆ off(p.t)

can passivate the event.
Notice that, if no constraints are given for the parameters in these actions,

Zeno behaviors are also possible, in which new events are always scheduled
in front of an already existing one. As such these Zeno behaviors are not,
however, harmful in the sense discussed in Sect. 10.1.7 (p. 359).

10.2.2 Aperiodic Events

Similarly to periodic events, each aperiodic event can be associated with an
object a of class Aper, in which attribute a.t indicates the time for which the
next execution of an active event has been scheduled, and no attribute for a
period is needed:

class Aper = {state Passive∗, Active where

Active = {t : R}} .
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Scheduling of an aperiodic event with a given delay can now take place by
action

Schedule(a : Aper; τ, delay : R) : Time.Record(τ)

∧ a.Passive

∧ delay > 0→ a.Active ′

∧ a.t ′ = ∆ on(delay)

and its execution is modeled by action

Execute(WFa : Aper; τ : R) : Time.Record(τ)

∧ a.Active

∧ τ = a.t→ p.Passive ′

∧ ∆ off(a.t) .

Finally, descheduling of an event without execution is modeled by action

Deschedule(a : Aper; τ : R) : Time.Record(τ)

∧ a.Active→ p.Passive ′

∧ ∆ off(a.t) .

Similarly to actions for periodic events, these actions also give rise to Zeno
behaviors, which are not harmful as such.

10.2.3 Example: Toy Car

As an example we discuss the specification of control software for a simple
mobile robot, a toy car that moves along a tape on the floor. As input the
control software receives readings from an odometer and from sensors that
sense the relative position of the car with respect to the tape. The outputs
control engine speed and the steering of the car. In addition, there is a switch
to start and stop the car. For simplicity, a constant target speed will be
assumed.

The specification will be given in layers illustrated in Fig. 10.1. Layer
Basis simply models unconstrained reading of sensors and setting of control
parameters. Logic superposes on this the logical sequencing of these actions,
whereas Algorithms adds the algorithms for determining the control param-
eters. Real time and periodic execution of these actions are finally imposed
using composition with layer Events.
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Basis

Logic Algorithms Events

Time

Toy Car

Fig. 10.1. Layers in the toy-car specification

Basis

In the first specification layer, Basis, we include four real-valued variables for
recording the readings of the two sensors and the settings of the two control
parameters as follows:

• variable r dist is used for the distance driven after the previous odometer
reading,

• variable r tape is used for the position of the car with respect to the tape,
• variable c engine is used for the control parameter for engine speed,
• variable c steer is used for the control parameter for steering.

Three actions are included in this layer: one for resetting all four variables
as 0, one for reading the two sensors, and one for setting the two control
parameters:

Clear : T→ r dist ′ = 0

∧ r tape ′ = 0

∧ c engine ′ = 0

∧ c steer ′ = 0 ,

Read(x, y : R) : T→ r dist ′ = x

∧ r tape ′ = y ,

Set(x, y : R) : T→ c engine ′ = x

∧ c steer ′ = y .
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At this level, all three actions are always enabled, and no constraints are
imposed on the parameters that indicate the values of sensor readings and
control parameters.

Logic

Layer Logic imposes logical control on driving, without paying attention to
the required control algorithms. The state of the system is extended with
nested state machines as follows (see Fig. 10.2):

state Off∗, On where

On = {state Reading∗, Setting} .

Here,

• states Off and On model the status of the main switch on the car, and
• states Reading and Setting model whether the sensors are to be read or

the control parameters are to be set.

� � � ∗ � � � � � � � ∗ � � � � � � �

� �

Start

Stop

Read

Set

Fig. 10.2. Logical control on driving

Starting the car takes place by turning the main switch from Off to On.
Defining this action as (the only) refinement of Basis.Clear makes sure that
old sensor readings and control parameter values are then cleared:

Start : Basis.Clear

∧ Off→ On.Reading ′ .

Stopping the car is modeled simply by a new action

Stop : Basis.Stutter

∧ On→ Off ′

and, in order to follow the control flow indicated in Fig. 10.2, actions Read
and Set of layer Basis are refined as follows:
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WFRead(x, y : R) : Basis.Read(x, y)

∧ On.Reading→ On.Setting ′ ,

WFSet(x, y : R) : Basis.Set(x, y)

∧ On.Setting→ On.Reading ′ .

The fairness requirements in these ensure that they are executed alternatingly
as long as the system is in state On.

Algorithms

Algorithms for determining the control values for engine speed and steering are
introduced in layer Algorithms, independently of the drive states introduced
above. Because of friction, three different states are distinguished in movement
control by an enumeration variable m state:

m state : {power up, moving, normal} .

The value of m state will be power up, when no movement has been sensed,
moving, when movement has just been sensed, and normal otherwise.

For steering we will use the so-called PID algorithm, which will not be
explained here. For the purposes of this presentation it is only important that
it needs two additional variables, r tape old and r tape ma, for recording
the previous reading of the tape position and the moving average of n most
recent readings, respectively, where n is some constant.

Action Clear of Basis now needs to be refined to initialize the new vari-
ables also:

Clear : Basis.Clear→ r tape old ′ = 0

∧ r tape ma ′ = 0

∧ m state ′ = power up .

Actions Read and Set are refined so that the former updates the newly in-
troduced variables, and the latter determines the control parameters using
certain control functions f and g and some limit value max:

Read(x, y : R) : Basis.Read(x, y)→ m state ′ = if (x = r dist = 0) then power up

else if (x > r dist = 0) then moving

else normal

∧ r tape ma ′ = ((n − 1) × r tape ma − r tape)/n

∧ r tape old ′ = r tape ,
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Set(x, y : R) : Basis.Set(x, y)

∧ x = if |r tape| > max then 0

else f(m state, c engine, r dist)

∧ y = g(r tape, r tape old, r tape ma) .

Composed Specification

The final specification of the toy car is obtained by composing the aspects
specified independently in layers Logic and Algorithms with the generic layer
Events appropriately.

In order to model the reading of sensors as a periodic event, we constrain
class Per of layer Events to be a singleton class, and associate the only ob-
ject p ∈ Per with the execution of action Read. Similarly, the class Aper of
aperiodic events is also constrained into a singleton class, and the setting of
control parameters is associated with its only object a ∈ Aper.

Action Logic.Start must now be synchronized with Algorithms.Clear.
Since this action also needs to activate the reading of sensors, synchronization
with Events.Activate is also needed for the periodic event p ∈ P. This leads
to action

Start(p : Per; τ : R) : Logic.Start

∧ Algorithms.Clear

∧ Events.Activate(p, τ, q, d) ,

where q and d are suitable constants for the length of the period and for the
delay for the first execution, respectively.

Similarly, action Logic.Read must be synchronized both with action
Algorithms.Read and with action Events.Trigger, which triggers the peri-
odic event for reading the sensors. In an implementation this will be immedi-
ately followed by the setting of the control parameters. This can be modeled
here by letting this action also schedule an aperiodic event for this setting
with some delay e, which must be less than the period d, 0 < e < d. This
leads to action6

WFRead(p : Per; a : Aper; τ, x, y : R) : Logic.Read(x, y)

∧ Algorithms.Read(x, y)

∧ Events.Trigger(p, τ) &

Events.Schedule(a, τ, e) .

As for action Logic.Set, it must be synchronized with Algorithms.Set.
Since synchronization is also needed with executing the aperiodic event that
was scheduled for the setting of the control parameters, we get

6It is obvious that combining actions for two different event objects, as done
here, does not affect any essential safety properties.
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WFSet(a : Aper; τ, x, y : R) : Logic.Set(x, y)

∧ Algorithms.Set(x, y)

∧ Events.Execute(a, τ) .

Finally, action Logic.Stop needs to be synchronized with descheduling of
further reading of sensors and setting of control parameters. Since the latter
event is scheduled only when in state Setting, this leads to two different
actions:

Stop1(p : Per; τ : R) : Logic.Stop

∧ Algorithms.Stutter

∧ Events.Passivate(p, τ)

∧ Reading ,

Stop2(p : Per; a : Aper; τ : R) : Logic.Stop

∧ Algorithms.Stutter

∧ Events.Passivate(p, τ) &

Events.Deschedule(a, τ)

∧ Setting .

The condition e < d is now sufficient to guarantee that the real-time
properties of the final system are not in conflict with the strict alternation of
actions Read and Set, as required in layer Logic. The fairness requirements
on the resulting actions Read and Set are then sufficient to guarantee the
preservation of the liveness properties of both Logic and Events.

Discussion

In addition to demonstrating the use of objects to represent periodic and
aperiodic events, this is another example of aspect-oriented specification. In
particular, it shows how the scheduling of actions can be separated from other
concerns in the design.

To illustrate how the actions of the resulting system contain conjuncts that
originate in different specification layers, we write out the final action Read
in its complete form (simplifications are indicated by enclosing superfluous
conjuncts in braces):

WFRead(p : Per; a : Aper; τ, x, y : R) : On.Reading

{∧ p.Active}

{∧ a.Passive}

{∧ e > 0}

∧ Ω ≤ τ ≤ min(∆)

∧ τ = p.t
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→ On.Setting ′

∧ r dist ′ = x

∧ r tape ′ = y

∧ m state ′ =

if (x = r dist = 0) then power up

else if (x > r dist = 0) then moving

else normal

∧ r tape ma ′ =

((n − 1) × r tape ma − r tape)/n

∧ r tape old ′ = r tape

{∧ a.Active ′}
∧ ∆ off(p.t)

∧ p.t ′ = ∆ on(p.d)

∧ a.t ′ = ∆ on(e)

∧ Ω ′ = τ .

The simplifications are based on the following observations. On account of
invariants

�(On ⇔ p.Active) ,

�(On.Setting ⇔ a.Active) ,

which can be easily proved for the single events p ∈ Per, a ∈ Aper, the two-
state structures in Per and Aper are superfluous. Similarly, condition e > 0

can be omitted from the action, since the assumptions on e make it identically
true.

Notice that, instead of constraining classes Per and Aper into singleton
classes, we could have introduced and used singleton subclasses P ⊆ Per and
A ⊆ Aper. In that case the actions of the final layer would have been special-
izations for these subclasses. However, this would have left the possibility for
other periodic and aperiodic events to give rise to Zeno behaviors. Although
not harmful in the sense discussed in Sect. 10.1.7 (p. 359), the resulting system
would not have been a refinement of layer Logic, since its liveness properties
would not have been satisfied by these Zeno behaviors.

Exercises

Exercise 10.2.1 Give scenarios where periodic or aperiodic events give rise
to Zeno behaviors. What is the minimum number of events needed for these,
if strong fairness assumptions are used in actions Trigger and Execute?

Exercise 10.2.2 What would happen if condition e < d did not hold in the
toy-car example?
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10.3 Hybrid Systems

In addition to state functions whose values change in discrete events, modeling
of a physical environment may involve continuous functions of time. A system
with both kinds of state functions is called a hybrid system.

10.3.1 Real-Time Functions

A real-time function (RT function) is a function of time t, where 0 ≤ t < ∞.
Time t is assumed to proceed continuously, even though only discrete values
of it are recorded in the clock Ω. In this subsection we consider how RT
functions can be generated by behaviors.

Continuous Time

Continuous time t is itself a simple RT function, which can be defined in a
trivial manner using the clock variable Ω as follows.

In each state si of a behavior 〈s0, s1, s2, . . . 〉, the clock variable Ω shows
the moment of time ti = si[[Ω]] at which state si was entered. Using δ to
denote the time that has elapsed since that moment, we have in each state si

a function of δ, denoted by Ω, which can be understand to express continuous
real time in state si:

Ω(δ)
∆
= ti + δ .

�

� ∗

� � � � � � � �

Fig. 10.3. Real time as an RT function
� ∗

As illustrated in Fig. 10.3, a continuous RT function Ω∗(t) can now be
constructed piecewise from functions Ω(δ) in the different states, so that in
each interval (ti, ti+1) the value of Ω∗(t) is determined by the function Ω in
state si as Ω∗(t) = Ω(t − ti). Obviously, Ω∗(t) = t is then trivially true for
each interval (ti, ti+1).

In the following we generalize this construction for arbitrary functions of
state variables and the time δ that has elapsed in the current state si.
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Time-dependent State Functions

Time-dependent state functions, or TD functions for short, are defined by
expressions that depend on state variables and on δ, and which are defined
for all non-negative real values of δ. In the following, TD functions will be
denoted by using a bar on top of identifiers.

In each state s, all state variables have fixed values. A TD function f then
determines in each state s a function of δ, s[[f]], which is defined for all values
δ ≥ 0. For instance, if a and b are state variables, then expression

f
∆
= a + b × δ (10.10)

is a TD function, which in each state s determines a linear function s[[f]] of δ,

s[[f]](δ) = s[[a]] + s[[b]] × δ .

This means that, in each state s, f determines a unique value s[[f]](t − s[[Ω]])
for any t, t ≥ s[[Ω]], as illustrated in Fig. 10.4.

�
� � � � �

�

�
� � � � � � � �

�

�
� � � � � � � �

�
� � � � �

Fig. 10.4. Illustration of a TD function
�

in state �

Intuitively, a TD function f has value s[[f]](0) at the moment when state
s is entered, but its value changes after that according to s[[f]](δ). Using the
corresponding unbarred symbol f to denote f(0), i.e.,

s[[f]]
∆
= s[[f]](0) ,

f is an ordinary state function connected with f by the invariant

�(f = f(0)) .

A truth-valued TD function P will be called a TD predicate.

Action Intervals

Let σ = 〈s0, s1, . . . 〉 be a timed behavior with clock readings ti = si[[Ω]] in its
states, t0 ≤ t1 ≤ · · · . Action intervals Ti, i = 0, 1, . . . , for behavior σ are then
defined either as closed time intervals [ti, ti+1] or semiclosed intervals [ti, ∞),
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depending on whether σ ends with indefinite stuttering in state si or not. In
other words,

Ti
∆
=

{
{t ∈ R | ti ≤ t ≤ ti+1} , if ∃j : j > i ∧ sj �= si ,

{t ∈ R | ti ≤ t} , if ∀j : j > i ⇒ sj = si .

Within an action interval Ti, time t is assumed to go through all values
in Ti, with all state variables – including the clock Ω – staying unchanged.
Final stuttering steps give rise to intervals where Ω grows unboundedly, but all
state variables stay unchanged. For behaviors that satisfy the finite variability
condition (10.8) on p. 359, action intervals Ti cover together all values 0 ≤
t < ∞.

Notice that it is also possible for an action interval Ti to consist of a single
value ti, when ti+1 = ti. In particular, intermediate stuttering steps generate
such singular intervals, but final stuttering steps do not.

Generation of Real-Time Functions

Given a behavior σ, a TD function f can be used for piecewise definition of a
real-time function f∗(t), or RT function for short,

f∗(t) ∆
= si[[f]](t − ti) , for t ∈ Ti . (10.11)

Figure 10.5 illustrates an RT function f∗(t) generated by a TD function f that
is always linear.

�

� �
� � � � � � � � � � �

� �
� � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � �

Fig. 10.5. Illustration of an RT function, determined by a TD function
�

For the endpoints ti of action intervals, (10.11) need not determine unique
values for f∗(t). However, if the step invariant

�[f(Ω ′ − Ω) = f
′
(0)] (10.12)

holds, then the different values always agree, and f∗(t) is uniquely defined
also for all endpoints t = ti. For behaviors that satisfy the finite variability
condition, f∗(t) is then uniquely defined for all values t ≥ 0.

A truth-valued RT function P∗(t) will be called an RT predicate.
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10.3.2 Approximation of Physical Quantities

Intuitively, the state of a closed hybrid system (which also includes the coop-
erating environment) has two kinds of variables: those whose values change
only at discrete moments of time (the discrete state), and those whose values
change continuously with time (the continuous state).

Hybrid models are useful for real-time systems that control physical quan-
tities f̂ associated with some real physical phenomena. The controlled quan-
tities f̂ are real-time functions that are governed by the laws of nature, but
can also be affected by changes in the discrete state of the control system. In
life-critical systems physical phenomena impose critical safety requirements
for the total system. The purpose of the control system then is to achieve
some goal without violating these safety requirements.

In principle, a physical quantity f̂ to be controlled is not explicitly acces-
sible to a real-time system. In each discrete state it can, however, be approx-
imated by a TD function f. This f needs to be updated frequently enough in
actions that take observations of f̂ as input.

In general, an approximation f may need to be associated with other TD
functions by which its precision can be managed. For instance, one may have a
TD function f and a constant ε for which the laws of nature and the properties
of the control system are sufficient to guarantee that

∀t ≥ 0 : |f̂(t) − f∗(t)| ≤ ε ,

i.e., that the RT function generated by f never differs more than ε from the
real value f̂(t).

10.3.3 Real-Time Invariants

For an RT predicate P∗(t) it is natural to interpret the informal statement
‘P∗(t) is always true’ as

∀t ≥ 0 : P∗(t) . (10.13)

Using P(δ) to denote the TD predicate that generates P∗(t), and P to
denote the ordinary state predicate defined by

�(P ⇔ P(0)) ,

the state invariant �P is, in general, insufficient to guarantee (10.13), since
the value of P∗(t) may change at some point of time without any action taking
place at that moment. This is illustrated in Fig. 10.6, where P is always true,
but P∗(t) is temporarily false between t1 and t2 and also becomes permanently
false after the last non-stuttering action at time tn.

For this reason we introduce notation �tP
∗(t) to denote that P∗ is a real-

time invariant, or RT invariant for short, with the following formal meaning:
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�� � � � � �
� � � � �

F

T · · ·

· · · �
∗� � �

Fig. 10.6. Illustration of a situation where � � holds but � � �
∗� � � does not

�tP
∗(t) ∆

= ∀δ : (δ ≥ 0 ∧ ¬P(δ) � 〈Ω ′ < Ω + δ〉) . (10.14)

This can be read as follows: if a state is entered where the TD predicate P(δ) is
false for some value δ ≥ 0, then some action will necessarily be executed at an
execution moment τ where τ < Ω+δ. It can easily be seen that this condition
prevents the phenomena illustrated in Fig. 10.6, thereby guaranteeing that
P∗(t) stays true for all values t ≥ 0.

Obviously, �tP
∗(t) implies �P for the associated ordinary state predicate

P.
Notice that this definition of RT invariance can also be used when it has

not been shown that P∗(t) would be uniquely defined for the endpoints of all
action intervals Ti.

10.3.4 Monotonic Time-dependent State Functions

A TD function f is nondecreasing in state s if the current state function s[[f]]
cannot decrease with time. Correspondingly, it is nonincreasing if s[[f]] cannot
increase with time:

s[[NonDec(f)]]
∆
= 0 ≤ δ1 ≤ δ2 ⇒ s[[f]](δ1) ≤ s[[f]](δ2) ,

s[[NonInc(f)]]
∆
= 0 ≤ δ1 ≤ δ2 ⇒ s[[f]](δ1) ≥ s[[f]](δ2) .

When nonincreasing but not nondecreasing, a TD function is decreasing:

s[[Dec(f)]]
∆
= s[[NonInc(f)]] ∧ ¬s[[NonDec(f)]] .

A TD function f is monotonic if it is either nondecreasing or nonincreasing
in each state, i.e.,

�(NonDec(f) ∨ NonInc(f)) .

An RT function f∗(t) that is generated by a monotonic TD function f is
piecewise monotonic, i.e., either nondecreasing or nonincreasing within each
action interval Ti. In particular, a linear TD function f (see (10.10) on p. 373)
always yields a piecewise linear RT function f∗(t).
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All these terms apply also to TD predicates, when false is interpreted to be
less than true. Obviously, an RT predicate that is generated by a monotonic
TD predicate can change its value at most once within any action interval. In
Fig. 10.6 (p. 376) the value of P∗(t) changes twice within action interval [t1, t2],
which shows that the associated TD predicate P is neither nondecreasing nor
nonincreasing in state s1 and therefore not monotonic.

When real phenomena are monitored with sufficiently frequent actions, the
associated quantities f̂(t) can be approximated by linear TD functions f, which
yield piecewise linear RT functions f∗(t). Inequalities on linear TD functions
lead to monotonic TD predicates (Exercise 10.3.1). This is one reason why
monotonic TD predicates are an important special case.

10.3.5 Regular Real-Time Predicates

An RT predicate P∗(t) is called regular if it is generated by a monotonic
TD predicate P, and is uniquely defined also for the endpoints of all action
intervals:

�(NonDec(P) ∨ NonInc(P)) ,

�[P(Ω ′ − Ω) = P
′
(0)] .

For a regular RT predicate P∗(t), the RT invariance condition (10.14) on
p. 376 can be simplified into

�tP
∗(t) ⇔ �P ∧ (Dec(P) � 〈T〉) , (10.15)

which can be read as follows: the associated ordinary state predicate P is
invariantly true, and the system does not halt in any state where the current
TD predicate P(δ) is decreasing (i.e., would turn false after some time δ).

This simplifies RT invariants for regular RT predicates into ordinary state
invariants and simple liveness properties.

10.3.6 Example: Gas Burner as a Hybrid System

As an example we discuss hybrid properties of the real-time gas burner of
Sect. 10.1.9 (p. 361). These properties will be utilized for adjusting the con-
stants d1, d2, and d3 in the actions properly.

Constraint on Gas Leakage

The real phenomenon behind the critical requirements for the gas-burner sys-
tem is the increase and decrease of gas concentration in the air. Ignoring again
the lag between the flame going off and the system recognizing this, predicate

Leak
∆
= flow s ∧ ¬flam s
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is true when the gas concentration increases. A primary requirement is that
this concentration does not exceed some critical value.

Instead of describing the associated physical phenomena directly, we start
with the following requirement, which could be derived from such a description
under suitable assumptions on gas flow and ventilation: during each continu-
ous time interval of length T∗, T∗≥ 60, the accumulated leakage time L∗ (i.e.,
the total time when Leak is true) does not exceed T ∗/20.

Assuming that the measuring of a time interval T ∗ and the associated leak-
age time L∗ starts at an arbitrary moment, these are nondecreasing, piecewise
linear RT functions, and the given requirement is

∀t > 0 : T∗(t) ≥ 60 ⇒ T∗(t) ≥ 20 × L∗(t) .

Defining RT predicate Q∗(t) as

Q∗(t) ∆
= T∗(t) ≥ 60 ⇒ T∗(t) ≥ 20 × L∗(t) , (10.16)

this requirement can be formulated as an RT invariance

�tQ
∗(t) . (10.17)

Regular RT Predicate

As defined in (10.16), Q∗(t) has a unique value for all t, t ≥ 0, but it is not
piecewise monotonic and therefore not regular. For instance, if leakage stops
for good at moment ti when T∗(ti) = 40 and L∗(ti) = 4, then Q∗(ti) is true,
but will turn false when T∗(t) = 60, and again true when T∗(t) = 80, as
shown in Fig. 10.7. More generally, if T ∗(t) < 60 but L∗(t) > 3, then Q∗(t) will
necessarily turn false when T∗(t) = 60.

� ∗� � �� � � � � � � �

�

F

T

F

T

� ∗� � �

� ∗� � �

�
∗� � �

Fig. 10.7. Illustration of RT predicates in the gas-burner example
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Instead of Q∗(t), we can, however, consider the modified RT predicate
P∗(t),

P∗(t) ∆
= L∗(t) ≥ 3 ⇒ T∗(t) ≥ 20 × L∗(t) , (10.18)

which turns false in such a situation already when L∗(t) exceeds 3. Require-
ment (10.17) can then be replaced by an equivalent requirement

�tP
∗(t) . (10.19)

It is left as an exercise for the reader to show that (10.19) is, indeed, equivalent
to (10.17) (Exercise 10.3.4). It is also left as an exercise to the reader to show
that P∗(t) is regular (Exercise 10.3.5), which then allows us to use (10.15) on
p. 377 for proving (10.19).

Instrumenting the Gas Burner

In order to find conditions that guarantee (10.19), the TD predicate P asso-
ciated with the RT predicate P∗(t) has to be safely approximated in terms
of state variables in the action system. In the following this will be done
by ‘instrumentation’ that adds new variables without otherwise affecting any
behaviors.

First we notice that P(δ) can be decreasing only if the state is Starting, or
if the state is Ignited and flam s = false. In both cases, fairness forces some
(system) action to be executed eventually. Therefore, on account of (10.15)
on p. 377, RT invariance of P∗(t) reduces to proving the associated ordinary
invariance

�(L ≥ 3 ⇒ N ≥ 19 × L) , (10.20)

where N and L are ordinary state functions, and non-leakage time N = T − L

has been used instead of the total elapsed time T .
Obviously, L and N can be safely approximated in (10.20) by any l and n

that approximate them from above and below, respectively. For simplicity we
take n to measure time spent in state Idle only, and l to measure time spent
either in state Starting or in state Ignited with b = true.

In order to express these state functions l and n in terms of state variables,
we introduce two state variables lacc and nacc, which are initialized as 0, and
are updated only in connection with system actions. When the measurement
is going on, the formulas for l and n are then

l = lacc + (if Starting then Ω − τStart s
else if Ignited ∧ b then Ω − tFlame off
else 0) ,

n = nacc + (if Idle then Ω − max(τStop s, τClose s, 0) else 0) .
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In addition, auxiliary state variables p and i are introduced to indicate
measuring as follows. Variable p (initialized as false) indicates whether the
measuring of l and n has started, and variable i (initialized as 0) counts the
number of times that state Idle has been entered with p = true.

It should be possible to start the measurement of l and n at an arbitrary
moment. For safe approximation of n and l it is, however, sufficient to do this
only in connection with action Start s. For this purpose, a Boolean parameter
q is added to this action, indicating that the measurement should start, if not
already started.

Denoting the specification layer in Sect. 10.1.9 (p. 361) by Timed Burner,
this instrumentation can be given by the following refinements of system ac-
tions:

SFStart s(q : B; τ : R) : Timed Burner.Start s(τ)→ p ′ = if q ∧ ¬p then true else false

∧ i ′ = if p then i + 1 else 0

∧ n ′
acc = if p then

nacc + τ − max(τStop s, τClose s, 0)

else 0 ,

SFIgn off s(τ : R) : Timed Burner.Ign off s(τ)→ l ′acc = if p then lacc + τ − τStart s else 0 ,

SFStop s(τ : R) : Timed Burner.Stop s(τ)→ l ′acc = if p then lacc + τ − τStart s else 0 ,

SFClose s(τ : R) : Timed Burner.Close s(τ)→ l ′acc = if p ∧ b then
lacc + τ − tFlame off
else 0 .

Adjusting Deadlines and Delays

On the basis of how system actions can follow each other it is easy to check
that the above instrumentation gives safe approximations of L and N. For a
safe adjustment of constants d1, d2, and d3 we now have to find under which
conditions invariant

�(l ≥ 3 ⇒ n ≥ 19 × l) (10.21)

can be guaranteed to be true.
For this we need bounds for the values of lacc and nacc. The following

bounds can be derived from a worst-case scenario, and can be proved to be
invariantly true (Exercise 10.3.6):
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�(p ∧ Idle ⇒ lacc ≤ (i + 1) × (d1 + d2) ∧ nacc ≥ i × d3) ,

�(p ∧ Starting ⇒ lacc ≤ i × (d1 + d2) ∧ nacc ≥ i × d3) ,

�(p ∧ Ignited ⇒ lacc ≤ i × (d1 + d2) + d1 ∧ nacc ≥ i × d3) .

From the definitions of state functions l and n we now get the following bounds
for l and n:

�(l ≤ (i + 1) × (d1 + d2) ∧ n ≥ i × d3) . (10.22)

From (10.22) we can check for which values of d1, d2, and d3 the prop-
erty (10.21) is true. For simplicity, assume that d1 + d2 ≤ 1. Then l ≥ 3

implies that i ≥ 2, and we also have

n − 19 × l ≥ i × d3 − 19 × (i + 1)

= i × (d3 − 19) − 19

≥ 2 × (d3 − 19) − 19 (provided that d3 ≥ 19)

= 2 × d3 − 57 .

This shows that conditions d1 + d2 ≤ 1 and d3 ≥ 28.5 are sufficient to
ensure that the system satisfies (10.21) and hence also the required real-time
invariance property (10.19) on p. 379.

Review Questions

Question 10.3.1 Give an informal explanation of how TD functions, RT
functions, and associated ordinary state functions relate to each other.

Question 10.3.2 Under which condition do action intervals cover all non-
negative real numbers?

Question 10.3.3 What are the situations in which a TD function f does not
generate a uniquely defined RT function f∗(t) for all t ≥ 0?

Question 10.3.4 What is the intuitive meaning of a real-time invariant
�tP

∗(t), explained in terms of the associated TD predicate P(δ)?

Question 10.3.5 Is a monotonic TD function f either nondecreasing in each
state or nonincreasing in each state?

Question 10.3.6 When is an RT predicate called regular, and what is the
significance of this property?
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Exercises

Exercise 10.3.1 Show that if two monotonic TD functions f and g are linear,
then f ≥ g is a monotonic TD predicate.

Exercise 10.3.2 Show that if TD predicates P and Q are both nondecreasing
(or nonincreasing) in a state s, then so also are P ∧ Q and P ∨ Q.

Exercise 10.3.3 Show that the definition of an RT invariant (10.14) on
p. 376 reduces to (10.15) on p. 377 for regular RT predicates.

Exercise 10.3.4 Show that requirement (10.19) on p. 379 is equivalent to
(10.17) in the gas-burner example.

Exercise 10.3.5 Show that RT predicate (10.18) on p. 379 is regular.

Exercise 10.3.6 Check the correctness of the bounds and calculations that
were used in enforcing (10.21) on p. 380 in the gas-burner example.
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The convention of introducing the execution moments of actions as addi-
tional parameters also distinguishes this presentation from related formalisms
described in the literature. Usually ‘tick’ actions (i.e., actions that correspond
to Time.Record) are not synchronized with other actions, which means that
the clock is advanced only in actions that have no other effects. The choice
made here has an effect on the enabling of actions and helps in keeping fairness
assumptions as the only ‘force’ behind liveness properties.
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Reexamining the Theory

The aim of this book has been to improve our understanding of how to develop
manageable specifications for complex reactive systems. Different aspects of
a comprehensive theory, as outlined in Sect. 1.2 (p. 8), have been discussed,
ranging from logical foundations to model-oriented abstractions. The main
contribution of the approach is its support for structuring specifications in
a manner that is guided by the logical properties of behaviors, rather than
by the architectural structure of system implementations. As illustrated by
several examples, this deviation from the conventional wisdom is crucial for
incremental development of specifications.

An inevitable consequence of this change in the underlying way of thinking
is that the presented theory is not just formalization of established concepts
and practices. Although this may make the presented ideas somewhat hard to
adopt, they do not, however, contain anything radically new. For instance, the
history of temporal logic in system specification [170, 151, 172, 152, 153] dates
back to 1977, and that of TLA [138, 141, 144, 145], action-oriented execution
models [20, 36], and superposition [48, 20, 36, 105] to the 1980s. Here we have
only made an effort to show how a comprehensive practical theory can be
built on these ideas.

Although we have used the term ‘practical theory’, the emphasis of this
book has not been on tools, but on such conceptual understanding of reactive
systems that is needed in their specification, design, and maintenance. Differ-
ent aspects of this have been addressed in the previous chapters. The main
viewpoint has been that of operational modeling. The key ideas have been
formulated in an ‘abstract’ form, and we have by purpose avoided discussing
how they are supported in the DisCo tools [4, 49], for instance, which were
developed in conjunction with the theory. This reflects the opinion that tools
are subsidiary to theoretical understanding, not the other way around.

In this concluding chapter we reiterate briefly some of the key aspects
of the theory, with the hope that the reader can then better distinguish the
essential underlying ideas from the more arbitrary decisions that had to be
made in the writing of this book.
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11.1 Basic Principles

Theories cannot be judged in isolation from the purposes for which they are
intended. In particular, it makes a big difference whether reactive systems
are thought of as ‘natural phenomena’ to be observed and verified to satisfy
given requirements, or as artifacts to be constructed for purposes that evolve
or are initially not fully understood. Obviously, the viewpoint of this theory
is the latter. In this section we review briefly some of the basic principles of
operational modeling that this has led to.

11.1.1 Dynamic Behaviors

In object-oriented programming, the word ‘behavior’ is often used to denote
just the ‘methods’ of an object, since these determine how an object will
react to different requests. One of the key principles then is that an object
encapsulates both state and behavior.

The background of such a notion of behavior is in an algorithmic view of
software, with transformational semantics given separately to each method.
This view is not, however, well suited for describing how a system actually
behaves. In particular, such a static view of objects does not give a natural
basis for specifying or reasoning on collective behaviors. To compensate for
this, various formalisms have been introduced in practice to describe dynamic
scenarios (i.e., examples or patterns of collective behaviors) that should be
possible in the system.

In contrast to this traditional view, the theory presented in this book is
based on reactive semantics, where dynamic properties are not added to a
basically transformational view as an afterthought. Instead, the very mean-
ing of a system is understood in terms of the dynamic behaviors that it can
generate. As a consequence, behaviors can no longer be encapsulated in ob-
jects, since they are collective phenomena to which all objects of a system
may contribute.

This fundamental principle is reflected in all parts of the theory, ranging
from the underlying logic to the operational execution model, and to language
principles.

11.1.2 Closed-system Modeling

With focus on dynamic behaviors, an operational model needs to be closed
in the sense that it models both the system to be implemented and its as-
sumed environment. When collective behaviors are modeled in this fashion,
it is natural to treat the system to be implemented and its environment in a
homogeneous manner.

For the underlying execution model this means that it should be suited
for modeling not only algorithmic processes but also nondeterministic choices.
The latter are needed especially in the modeling of environment behavior,
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but are also otherwise useful at the level of specifications. In the presence
of nondeterminism, fairness assumptions are a natural notion for expressing
liveness requirements.

In order to be able to separate the system to be implemented from its as-
sumed environment, each action in a closed-system model has to be assigned
to the responsibility of one of the cooperating parties. This partitioning of
responsibilities is considered here to be external to the theory itself, although
it is important for validating whether a model does what it is intended to
do, for deciding on the refinements that may be needed to achieve imple-
mentability on an intended hardware/software platform, and, of course, for
an implementation itself.

Since a closed-system specification determines all possible scenarios for
collective behaviors, it also gives a formal basis for constructing test cases for
system testing.

11.1.3 Action Orientation

From the viewpoint of traditional software-engineering methods, the action-
oriented execution model of this theory may be considered an obstacle. In
particular, no general rules can be given to transform arbitrary action systems
into efficient implementations, which means that the gap between specifica-
tions and implementations cannot be overcome in a straightforward manner.

However, as stated above, the main purpose of this theory is not to model
implementations as such, but to aid in developing manageable specifications
for complex systems. From this viewpoint the action-oriented execution model
has two major advantages. Firstly, it has an intuitively natural relationship to
the underlying logic, which makes it easy to alternate between the viewpoints
of operational execution and of formal properties. Secondly, it is eminently
suited for the superposition-based development method, which would lead
to unnecessary complexities in connection with more traditional execution
models.

For these reasons the action-oriented execution model is essential in mak-
ing the different components of the theory fit together in a natural manner.
It affects, however, the module structure of the resulting specifications, which
will be discussed below in Sect. 11.2.

11.1.4 Abstractions

The main enemy in software engineering is complexity, which has increased not
only with system size, but also as a result of a paradigm shift from algorithmic
computing to reactive systems [193]. As stated by Dijkstra [47]: “Because we
are dealing with artifacts, all unmastered complexity is of our own making
. . . , so we had better learn how not to introduce such complexity in the first
place.”
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The most powerful weapon to fight complexity is our mental capability for
abstraction. For reactive systems this means that we need means to consider
them at varying levels of abstraction. To serve their purpose, these abstrac-
tions must capture the meaning of a system correctly, not only as more or less
truthful descriptions of the intended system, as is often thought.

The theory presented here provides such abstractions of the system under
specification and design, as has been discussed by Kurki-Suonio and Mikko-
nen [130, 131, 132]. The levels of abstraction are also associated with an in-
cremental specification method in a natural manner. The approach can there-
fore be called abstraction-based, in contrast to component-based approaches, in
which the specification and design process is guided by the architectural struc-
ture of the intended implementation entities. This contrast will be elaborated
in more detail below in Sect. 11.2.

Correct abstractions are useful not only in specification and design, but
for any purposes where human understanding of complex systems is needed.
In the DisCo project, Mikkonen et al. have studied the use of hierarchical
abstractions in the management of evolving software systems [156, 157, 5], and
Aaltonen has utilized them in reverse engineering of a distributed switching
system – an industrial evaluation of this work was given in [88] – as well as
in generating test cases for system testing [2, 1].

11.1.5 Preexistence of Variables

In programming it is natural to think that variables come into existence by
declarations or by their first uses. Variables that have not yet been added
to a system are therefore nonexistent. In logic the situation is different: the
existence of a variable is independent of whether anything is said about it.

The need for correct abstractions of systems under specification leads also
in operational models to the logical view of variables. Since abstractions are
models of the final system, we have to think that each variable of the final
system ‘preexists’ in each abstraction, even when nothing is said about it. In
other words, saying nothing of a variable does not mean its nonexistence, but
that no constraints are given for its values in behaviors.

Similarly, subclasses of a class also need to ‘preexist’ before anything has
been said about them. As a consequence, introducing a subclass also intro-
duces implicitly the associated complement subclass, even if nothing is explic-
itly said about it.

This may sound like overemphasizing a slight difference in the way of
thinking in logics and in programming. In connection with multiple inheritance
this makes, however, a difference that cannot be ignored in reasoning. The
reason for this is that for any two classes it is important to know whether
their intersection is empty or not – independently of whether their multiple
inheritance has already been explicitly utilized.
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11.1.6 Connection Between Variables and Actions

Another difference from conventional thinking is that variables have no sig-
nificance as such; they get their meanings only through the actions that deal
with them.1 This means that variables and the associated actions must always
be introduced together.

For incremental specification and for the correctness of abstractions this
is a crucial point. In particular, if new ways to update previously introduced
variables could be added at lower levels of abstraction, this would immediately
invalidate previous abstractions. Nondeterminism is obviously essential for
introducing actions at levels where their effects cannot yet be specified in a
deterministic manner.

11.1.7 Composition of Closed Systems

In ‘classical’ object-oriented modeling, systems are constructed by composing
them from components, which may be individual objects or (open) subsystems
that consist of several interacting objects. Reusability is mainly achieved at the
level of classes, which are reusable patterns for objects with similar properties.

From the viewpoint of such component-based architectures, composition of
closed systems may sound self-contradictory. How can several closed systems
be parts of a larger closed system, and how can a single closed system be
reused in different contexts? With a slight change of viewpoint, composition
and reuse are, however, natural ideas also for closed-system models:

• The closed systems to be composed can be understood as projections of
the resulting system. Each of them describes the same closed system, but
concentrates on different (possibly overlapping) aspects of it.

• Instead of composing specific systems from specific objects or subsystems,
one can compose patterns for systems from subpatterns [154, 113]. The
same pattern2 can be reused in different contexts, to generate either pat-
terns or specific systems.

Following these ideas, conventional composition has been generalized in
this theory into more general synthesis, where modules are patterns rather
than specific systems, and the patterns to be composed need not model com-
ponents that would correspond to disjoint implementation entities in the syn-
thesized system.

1As pointed out in Sect. 6.3.3 (p. 182), this does not apply to variables that
are introduced as immutable constants, describing some fixed parameters of the
problem.

2This conforms to the usage of the word ‘pattern’ in object-oriented design.
Obviously, a specific system is a special case of a pattern, where no further freedom
is left for the designer.
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11.2 Two Dimensions of System Architecture

As has been pointed out several times in this book, software-engineering meth-
ods are affected by the basic philosophy that is adopted, which may be either
transformational (algorithmic) or reactive. In this section this question is ana-
lyzed in more detail in the light of two orthogonal dimensions of specification
architectures, as discussed in [155, 104].

11.2.1 Vertical Architectures

Executions of a system can be understood as state sequences that start from
an initial state and (possibly) end in a final state. The transformational philos-
ophy leads to specifying them in terms of a precondition (P), which is assumed
to be satisfied in the initial state, and the intended postcondition (Q), which
should be satisfied in the final state (see Fig. 11.1). An implementation of such
a specification generates, in general, state sequences with intermediate states.
The contributions of a conventional component to these sequences correspond
to subsequences (V) with transformational specifications of their own, i.e.,
with their own preconditions (PV) and postconditions (QV), as illustrated in
Fig. 11.2.

�
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Fig. 11.1. Illustration of a transformational specification
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Fig. 11.2. Vertical slice in a state sequence

In general, the component structure of a system then induces a nested
structure of subsequences of states. Since this results in vertical slicing of
graphical illustrations, the components will be called vertical modules in the
following, and structuring a system in terms of them will be called vertical
architecture.

With this philosophy, the goal of a specification method is to find a suitable
component structure and associated subspecifications (PV , QV) in terms of
which the original specification (P, Q) is implementable. Determining and im-
plementing such subspecifications can be seen as an application of the divide-
and-conquer approach to deal with complexity.
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11.2.2 Horizontal Architectures

In the reactive philosophy, a specification determines behaviors, which may
also be nonterminating. As discussed extensively in this book, a natural mod-
ule of a specification then corresponds to a projection of the intended be-
haviors on a given subset of variables (see Fig. 11.3, where H denotes such a
projection of a behavior).

· · · · · ·

�

Fig. 11.3. Horizontal slice in a state sequence

In general, the module structure of a specification then induces a nested
structure of projections. Since this results in horizontal slicing of graphical
illustrations, such modules will be called horizontal modules in the following,
and structuring a system in terms of them will be called horizontal architec-
ture.

With this philosophy, the idea of a specification method is to find suitable
projections of collective behaviors, in terms of which the total specification
can be constructed incrementally. The main tool for dealing with complexity
is then abstraction, as was discussed above.

11.2.3 Orthogonality of the Two Dimensions

In good programming practice, variables are encapsulated in the (vertical)
modules to which they belong. If X denotes the set of variables encapsulated
in such a module, then the vertical slices of behaviors that are generated by
the module also determine uniquely the horizontal slices for the set X. The
reader may therefore ask whether there is any essential difference between the
two kinds of modules.

Instead of asking whether a module is a vertical or horizontal module, the
right question is, however, for which purpose it is a natural module. Individ-
ual objects, for instance, are usually not natural modules for reasoning on
collective behaviors, but they may be realistic units of implementation.

The contrast between the two kinds of modules is illustrated by the two
‘cakes’ in Fig. 11.4. The slices shown in the left-hand cake indicate a given
vertical architecture, where each variable is encapsulated in one of the slices.
A horizontal architecture, on the other hand, is illustrated by the layers in
the cake on the right, where each layer may extend over several (possibly all)
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Fig. 11.4. Illustration of vertical vs. horizontal modularity

Fig. 11.5. Vertical slices as horizontal layers

vertical slices. The concerns addressed by such layers are therefore often called
crosscutting concerns.

As shown by Fig. 11.4, the two dimensions of architecture are independent
of each other and can therefore be understood as orthogonal dimensions. This
does not, however, exclude the reduced possibility of treating a basically ver-
tical architecture also in a horizontal manner, which was referred to above.
Instead of addressing crosscutting concerns, the layers then specify behaviors
from the viewpoints of the individual vertical modules only, as illustrated in
Fig. 11.5. This is, in fact, how collective behaviors are often defined and rea-
soned about in formal approaches to component-based and other vertically
structured systems.

11.2.4 Notes on Current Practice

The mechanisms for modularity in programming languages provide power-
ful support for vertical architectures. Therefore, traditional specification and
design methods are also based on the vertical view. The need for taking a hor-
izontal view has, however, also been recognized in practice. In current design
methods this dimension is, however, taken as an auxiliary viewpoint, which is
either appended to a vertically structured specification, or used informally in
its construction. As such the role of the horizontal view is secondary, although
it then also provides valuable information for checking whether the design sat-
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isfies the intentions of the designer. In UML, for instance, this viewpoint of
dynamic scenarios is applied in sequence diagrams and use cases [191].

More effectively, the horizontal dimension is utilized in design patterns [65],
which can be understood as horizontal modules on which applications are
to be superposed [154]. The same holds also for middleware systems like
CORBA [181]. Jackson’s problem frames [89] are another proposal to guide
developers to focus on the horizontal dimension.

In programming languages the horizontal dimension is emerging in terms
of aspect-oriented programming [115, 51, 183], where an additional structure
of aspects is imposed on top of a vertical structure of objects.

11.2.5 Comparing the Two Kinds of Modularity

The main properties and relative advantages of the two kinds of architecture
can be summarized as follows:

• Vertical and horizontal architectures are associated in a natural manner
with transformational and reactive semantics, respectively.

• For state sequences in behaviors, vertical architectures induce nesting of
subsequences of states, whereas horizontal architectures induce nesting of
projections to subsets of variables.

• In the vertical dimension, modularity can be expressed in terms of open
systems, whereas closed-system modularity is natural for the horizontal
dimension.

• Sequential composition and subroutine invocation are natural operations
for the composition of vertical modules, whereas parallel composition and
superposition take analogous roles for the synthesis of horizontal modules.3

• From the viewpoint of formal methods, vertical modularity supports step-
wise refinement of complete specifications, whereas horizontal modularity
supports incremental derivation of specifications.

• In managing the complexity of system design, vertical modularity is associ-
ated with the divide-and-conquer approach, whereas horizontal modularity
makes effective use of abstractions.

• Vertical modularity is good for systems and components with fully given
and stable specifications, whereas horizontal modularity has advantages in
dealing with evolving systems and with systems that are under construc-
tion and not yet completely understood.

• Vertical modularity is strongly supported by current languages and tools,
whereas support for horizontal modularity is only emerging and still very
weak.

• Vertical modularity has proved essential in implementation technology,
whereas the main advantages of horizontal modularity seem to be in spec-
ification.
3Notice, however, that subclassing can be understood as superposition on class

definitions also in the context of vertical modularity.
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11.2.6 Combining the Two Dimensions

In the theory presented in this book, the primary dimension of modularity is
horizontal. That is, the specification process for reactive systems is suggested
to proceed incrementally in terms of horizontal layers. The justification for
this is that the primary concern in specification is the meaning of a system,
and horizontal modularity is the natural one for reactive semantics.

The vertical dimension has a secondary role in this approach, and is re-
flected in the high-level view taken of the object structure in an eventual imple-
mentation. This object structure does not, however, remove the gap that still
exists between the resulting action-oriented specifications and their implemen-
tation with currently available tools. If the horizontal structure corresponds
to a well-specified architectural pattern, as described in [95], for instance, this
gap need not be a problem. In the worst case the horizontal structure of a
specification may, however, totally disappear from an implementation.

As mentioned above, a kind of opposite approach is taken in aspect-
oriented programming, which aims at supporting horizontal modularity at
the level of programming languages. Based on conventional programming lan-
guages, crosscutting concerns are addressed in these approaches as a kind of
afterthought, added on top of vertical module structures. Even though these
ideas seem like a major step in utilizing the horizontal dimension in implemen-
tations, they do not reflect the fact that horizontal views are most important
in early stages of specification and design.

Obviously, combining the two architectural dimensions in an optimal fash-
ion in the specification, design, and implementation of software requires better
tool support than what is available, yet. An interesting direction for further
research therefore is to investigate how the currently used design methods and
programming systems could be extended or modified so that the horizontal
structure of aspect-oriented specifications could be effectively utilized with
them. For some promising efforts in this direction the reader is referred to the
use of AspectJ [114, 13] by the DisCo group [3] and by Sihman and Katz [182],
of UML [191] by Hammouda et al. [74], by Katara and Katz [103], and by
Pitkänen and Selonen [169], and of OMG Model Driven Architecture [165] by
Mikkonen et al. [158].
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nen. Coordinating aspects and objects. In Antonio Brogi and Jean-Marie
Jacquet, editors, Electronic Notes in Theoretical Computer Science, volume 68.
Elsevier, 2003.

4. Timo Aaltonen, Mika Katara, and Risto Pitkänen. DisCo toolset – the new
generation. Journal of Universal Computer Science, 7(1):3–18, 2001. http:

//www.jucs.org.
5. Timo Aaltonen and Tommi Mikkonen. Managing software evolution with a

formalized abstraction hierarchy. In Danielle C. Martin, editor, Proc. 8th
IEEE International Conference on Engineering of Complex Computer Systems,
ICECCS 2002, pages 224–231. IEEE Computer Society, 2002.

6. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

7. Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543–1571,
September 1994. An earlier version appeared in [40], pages 1–27.

8. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transac-
tions on Programming Languages and Systems, 17(3):507–534, May 1995.

9. Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

10. Ada Programming Language. ANSI/MIL-STD-1815A-1983.
11. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing

Letters, 21(4):181–185, October 1985.
12. Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in

languages for distributed programming. Distributed Computing, 2(4):226–241,
1988.



398 References

13. AspectJ home page, http://aspectj.org.
14. Paul C. Attie. A guide to Raddle 87 semantics. Technical Report STP-340-87,

Microelectronics and Computer Technology Corp., 1988.
15. Paul C. Attie, Ira R. Forman, and Eliezer Levy. On fairness as an abstraction

for the design of distributed systems. In Proc. 10th International Conference
on Distributed Computing Systems (ICDCS), pages 150–157. IEEE Computer
Society, 1990.

16. Paul C. Attie, Nissim Francez, and Orna Grumberg. Fairness and hyperfairness
in multiparty interactions. Distributed Computing, 6:245–254, 1993.

17. Ralph-Johan Back. Refinement calculus, part II: parallel and reactive pro-
grams. In Jaco W. de Bakker, Willem-Paul de Roever, and Grzegorz Rozen-
berg, editors, Stepwise Refinement of Distributed Systems, number 430 in Lec-
ture Notes in Computer Science, pages 67–93. Springer, Berlin Heidelberg New
York, 1989.

18. Ralph-Johan Back and Reino Kurki-Suonio. Distributed cooperation with ac-
tion systems. ACM Transactions on Programming Languages and Systems,
10(4):513–554, 1988.

19. Ralph-Johan Back and Reino Kurki-Suonio. Serializability in distributed sys-
tems with handshaking. In Timo Lepistö and Arto Salomaa, editors, Automata,
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proof rule 105–116, 121, 153–155

non-temporal 105–106, 153
property (of behaviors) 63–64
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closed 66
stochastic 13, 32

PVS 121

quantification 60, 77, 145–147,
151–155

quantified operator 152
quantifier rule 153–155

�
58, 133

Rabin, Michael O. 350
Raddle 159, 349
Ramesh, S. 159, 349
reachability graph 205
reactive semantics see semantics,

reactive
reactive system 3, 12, 21, 28, 31, 33, 34
real see

�

real-time feasibility 360
real-time property 4, 355–357
real-time system 4, 353–383

hard 4
soft 4

record 58, 133
refinement 161, 173, 175, 213

of action 162–164, 185
default 165, 170

of atomicity 186, 286–291, 329
of class 216
of component 271–272, 279–285

non-interfering 272
robust 279–285

of interface 286–291, 300
stepwise 161, 395

refinement calculus 20
refusing an action 267, 279
reification 9
Reisig, Wolfgang 21, 349
relation 136, 138–142, 146, 215, 237

acyclic 141
relation 138
relation declaration 138
remote procedure call 320, 323
rendezvous (in Ada) 319–321
response 13
rest

� � 167, 241
reuse 216, 391
ring relation 141
robust relaxation 313

role 143
� � � � 141
root (of relation) 141
root class 221
RT function 372–374
RT invariant 375
RT predicate 374

regular 377

�
58, 133

SAF see action fairness, strong
safety property 63–64, 66

essential 189
relative 361

Sakkinen, Markku 260
satisfiability 60, 61, 72

temporal 69
scalability 137
scenario 388, 395
Schneider, Fred B. 56, 101, 349
Scholten, Carel S. 212
scope 132–134
Script 349
select statement (in Ada) 52, 54, 319,

321
Selonen, Petri 396
semantic domain 14
semantic interpretation 69, 86, 105
semantics 69, 70, 79

interleaving 21, 348, 349
partial-order 21, 349
reactive 11, 12, 20, 388, 395, 396
transformational 11, 12, 20, 388, 395

semaphore 47, 56
fair 47, 56

separability
of guard 318
of state predicate 265

sequence 58, 133
sequence 133
sequence diagram 395
sequence relation 141
set 133
set 133
SF see fairness, strong
Shankar, A. Udaya 213
shared actions 349
shared event 300
shared memory 320, 323
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SIF see interaction fairness, strong
Signal 20
Sihman, Marcelo 396
Silberschatz, Abraham 349
simplification (of action) 185
Simula 67 259
size (of class) 138, 153
SL see liveness, strong
Smalltalk 259
Smolka, Scott A. 349
specialization 217, 219, 224–226, 260

default 225
specification 5, 14–15

algebraic 21
aspect-oriented 19, 161, 396
constraint-oriented 213, 300
executable 94
incremental 3, 161, 387, 395
layered 19, 161, 173–178
model-oriented 8, 95
non-timed 354
operational 10, 11, 25, 31, 48–49, 55,

86–87, 94, 135
parameterized 99
process-algebraic 21, 300
property-oriented 8, 95
requirements 81, 95
timed 354

SPF see process fairness, strong
stable 76, 81
state 25–27, 58–59, 137

continuous 375
discrete 375
final 12, 30
global 34, 137, 308, 348
initial 12, 30, 62, 127
local 136, 307, 310
named 126, 137
reachable 30, 108

state 126
state declaration 126
state function 59

non-primitive 59
primitive 59
steady 77
time-dependent see TD function

state invariant 71, 107, 121
state invariant rule 107
state name 126

state predicate 59–61
local (to component) 265
stable 76

state space 27
state variable 26–29, 58–59

auxiliary 26, 77, 95, 97, 185, 189
class-specific 223
concealed 266
essential 26, 77, 95, 189
global 137
hidden 77, 189
inherited 223
local (to component) 28, 264
local (to named state) 134–135
local (to object) 136, 223
non-initialized 134
primed 71
private 28, 266
quantified 77, 89, 185, 189
shared 28, 264, 266, 300
untyped 58, 133

state-based approach 13, 14, 21, 300
statechart 20, 159
STATEMATE 20
steady 77
step 12–13, 29–30, 62, 71–72

non-visible 12–13
response 13
stimulus 13
stuttering 62, 74, 82

step invariant 75, 108
step invariant rule 108
stimulus 13
stochastic property 13, 32
Stomp, Frank A, 351
string see

�

strong fairness rule 114
Stroustrup, Bjarne 259
stutter-excluding part see

�

stuttering 62, 72, 74–75, 82–83
stuttering closure see

� �

stuttering part see
�

stuttering relaxation 187
subclass 215–229

complement 221
explicit 223, 243–245

subobject 215, 218, 237–240
subobject class 237–240
subobject relation 238–240
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subroutine invocation 163, 395
substate 128–130

default 129
immediate 129

superclass 221
superposition 162, 164–166, 172, 212,

387, 395
superstate 128–129

immediate 129
synchronization (of actions) 175–179,

227, 268
synchrony hypothesis 13, 14, 20, 28,

31, 43
synthesis 172, 391, 395
Systä, Kari X
system action 30
system part 27, 263, 264, 273–274
system variable 28, 95

T 60, 63
Taivalsaari, Antero 260
tautology 60, 61, 72

temporal 69
tautology rule 106
TD function 373

decreasing 376
monotonic 376
nondecreasing 376
nonincreasing 376
piecewise monotonic 376

TD predicate 373
temporal logic 14, 21, 69, 101
temporal logic of actions see TLA
temporal weakening 107, 108, 111
termination 64
tick action 383
time 372
time-dependent error 33
timeout 358
TLA X, 14, 18, 21, 57, 69, 75, 101, 121,

213, 300, 382, 387
TLA

�

21, 101, 213
total correctness 65
traceability (of actions) 181
transformational semantics see

semantics, transformational
transformational system 12, 21, 308
tree relation 141
true 60

true concurrency 13, 14, 305, 308, 348,
349

Tsay, Yih-Kuen 350
Turing machine 10
Turing, Alan Mathison 20, 121
type 58, 132–133, 151

aggregated 133
primitive 133
structured 133

type invariant 133

�
133

UML 159, 260, 395, 396
undefined value 59, 60, 92, 133, 153
underspecification 95
unification condition 177
Unified Modeling Language see UML
union (of relations) 140
UNITY IX, X, 21, 56, 101, 212, 213,

350
unless 77, 81
unless predicate 77
until 81
until predicate 81
untyped see

�

use case 395
uses relation 246

�
� �

58, 136
validation 5, 6, 53–55
�

� � 58
�

� � ′ 71
variable see also state variable

bound 152
free 99, 151
logical 60
quantified 99, 151–152
rigid 60, 99, 151–152

variable declaration 132–133
VDM 20
Venn diagram 63
verification 5
von Neumann, John 20, 121
von Wright, Joakim 20

WAF see action fairness, weak
weak fairness rule 113
Wegner, Peter 21, 260
Weiser, Mark David 213



418 Index

well-founded ordering 115–116
well-founded ordering rule 116
WF see fairness, weak
where 130
WIF see interaction fairness, weak
Wills, Alan Cameron 160
WL see liveness, weak

WPF see process fairness, weak

Z 20

� 58, 133

Zave, Pamela 55, 300

Zeno of Elea 359
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